
Does the level of detail of UML diagrams affect
the maintainability of source code?:
a family of experiments

Ana M. Fernández-Sáez & Marcela Genero &

Danilo Caivano & Michel R. V. Chaudron

Published online: 24 December 2014
Springer Science+Business Media New York 2014

Abstract Although the UML is considered to be the de facto standard notation with which to
model software, there is still resistance to model-based development. UML modeling is perceived
to be expensive and not necessarily cost-effective. It is therefore important to collect empirical
evidence concerning the conditions under which the use of UMLmakes a practical difference. The
focus of this paper is to investigate whether and how the Level of Detail (LoD) of UML diagrams

Empir Software Eng (2016) 21:212–259
DOI 10.1007/s10664-014-9354-4

Communicated by: Richard Paige

A. M. Fernández-Sáez :M. Genero
ALARCOS Research Group, Department of Technologies and Information Systems, University of
Castilla-La Mancha, Paseo de la Universidad 4, 13071 Ciudad Real, Spain

M. Genero
e-mail: Marcela.Genero@uclm.es

D. Caivano
Department of Informatics, University of Bari, Via E. Orabona 4, 70126 Bari, Italy
e-mail: danilo.caivano@uniba.it

e-mail: danilo.caivano@searandp.com

D. Caivano
SER&Practices s.r.l, Spin Off Company of the University of Bari, Via E. Orabona 4, 70126 Bari, Italy

M. R. V. Chaudron
Joint Computer Science and Engineering Department of Chalmers, University of Technology and University
of Gothenburg, SE-412 96 Gö teborg, Sweden
e-mail: chaudron@chalmers.se

e-mail: chaudron@liacs.nl

A. M. Fernández-Sáez (*) :M. R. V. Chaudron
Leiden Institute of Advanced Computer Sciences, Leiden University, NielsBohrweg 1, 2333 CALeiden, The
Netherlands
e-mail: anamaria.fernandez.saez@gmail.com

Ana M. Fernández-Sáez
e-mail: fernande@liacs.nl

impacts on the performance of maintenance tasks in a model-centric approach. A family of
experiments consisting of one controlled experiment and three replications has therefore been
carried out with 81 students with different abilities and levels of experience from 3 countries (The
Netherlands, Spain, and Italy). The analysis of the results of the experiments indicates that there is
no strong statistical evidence as to the influence of different LoDs. The analysis suggests a slight
tendency toward better results when using low LoD UML diagrams, especially if used for the
modification of the source code, while a high LoDwould appear to be helpful in understanding the
system. The participants in our study also favored low LoD diagrams because they were perceived
as easier to read. Although the participants expressed a preference for low LoD diagrams, no
statistically significant conclusions can be drawn from the set of experiments. One important
finding attained from this family of experiments was that the participants minimized or avoided the
use of UML diagrams, regardless of their LoD. This effect was probably the result of using small
software systems from well-known domains as experimental materials.

Keywords UML diagrams . Softwaremaintenance . Level of detail . Controlled experiment .

Replication . Family of experiments

1 Introduction

The maintenance phase is the phase of the life cycle that absorbs a significant number of
software development resources (Glass 2002; Pressman 2005): “Maintenance typically con-
sumes 40 to 80% of software costs. Therefore, it is probably themost important life cycle phase
of software” and “60 % of the budget is spent on software maintenance, and 60 % of this
maintenance is to enhance existing software”. It is therefore important to attempt to improve
maintainers’ performance by helping them to understand the requirements and the system being
maintained (especially in the case of critical systems). The comprehension of a program could
consume half of the time spent by developers on maintenance (Fjeldstad and Hamlen 1979).
The presence of proper documentation might thus help them in this part of the maintenance
(Tryggeseth 1997). Program comprehension may be particularly benefited by graphical docu-
mentation (Arisholm et al. 2006; Dzidek et al. 2008) since, as is commonly stated, “a picture
says more than 1,000 words”. Several modeling languages have therefore emerged, which are
either domain-specific modeling languages or general-purpose modeling languages. They
appeared as a means to improve the customer’s understanding and, in general, communication
among team members (Nugroho and Chaudron 2009). The wide application of modeling has
led to the development of numerous informal and formal approaches for modeling, such as
Entity Relationship Diagrams (ERD) (Wieringa 2003) with which to model data, Specification
and Description Language (SDL) (Glässer et al. 2003) with which to model telecommunication
systems, or formal modeling languages such as Z (Spivey 1989) and B (Abrial 1996). The
Unified Modeling Language, or UML (OMG 2010), is an Object Oriented modeling notation
which first appeared in 1997 and has now become one of the most widely used modeling
languages in industry and the de-facto software modeling notation (Grossman et al. 2005;
Erickson and Siau 2007). However, there is still frequent resistance to model-based develop-
ment in many software organizations since the use of the UML is perceived to be expensive and
not necessarily cost-effective (Arisholm et al. 2006). This is even worse for organizations that
use agile methods to develop software (Cohen et al. 2004). It is thus important to investigate
whether the use of the UML can make a practical difference and justify the costs sustained. It is
also important to study under which conditions (for example, in which type of software

Empir Software Eng (2016) 21:212–259 213

projects, with which programming languages, type of maintainers, type of maintenance, size of
system, and so on) the UML can make a practical difference.

Obviously, not all UML diagrams have the same complexity, layout, level of abstraction,
etc. Furthermore, previous studies have shown that the style and rigor used in the diagrams
may vary considerably according to the software project (Lange et al. 2006) and affect the
source code of the system in a different way (Nugroho and Chaudron 2008). On the one hand,
the different purposes for which a diagram may be intended (for example: architecting
solutions, communicating design decisions, detailed specification for implementation, or
automatically generating implementation code) signifies that the same system can be repre-
sented with different styles. On the other hand, forward design diagrams, i.e., the diagrams
generated during forward development, are sometimes available for maintainers in the main-
tenance phase, but when this is not the case, the diagrams may be reconstructed using a
Reverse Engineering (RE) technique. RE diagrams are easy to obtain without having to invest
in a lot of developer effort, as opposed to forward design diagrams which need to be manually
generated and updated, and the level of detail of the RE diagrams is extremely high. Given the
ease of the generation of RE diagrams and the fact that they can be generated automatically at
any time, it is possible for maintainers to have up-to-date diagrams modeling the system when
they need them. However, their Level of Detail might be a factor to be considered in order to
ensure the effectiveness of the diagrams during software maintenance. If is not possible to
reverse engineer a UML diagram, then it is necessary to create it by hand during the
development phase (to avoid the need to create it during later maintenance). A question
therefore arises: “To what LoD is it necessary to detail the diagrams as part of the document
of a system process being used in order not to use more resources in its creation than the
paybacks that might originate from it in a future maintenance based on a model-centric
approach?” Our experience allows us to state that the use of incomplete documentation and
of a subset of the entire software system on which a maintenance operation impacts is quite
common in the software industry. A similar question to the previous one then arises: “To what
LoD is it necessary to update the UML documentation in order for it to be synchronized with
the source code and thus attain understandability benefits during further maintenance?

The aforementioned considerations motivated us to perform a family of experiments in
order to analyze whether and how the understandability and modifiability of source code vary
when using low or high LoD UML diagrams during the maintenance of a system when a
model-centric approach is used. The UML diagrams were only used to support the under-
standing of the system and to guide its implementation but not to automatically generate the
source code. We focused on a model-centric approach rather than an MDD (Model-Driven
Development) approach because the LoD expected to be used with the purpose of automat-
ically generating source code would probably always be sufficiently high for details in the
source code not to be lost, but this is not the hypothesis of this paper.

We considered a specific type of maintenance in order to restrict the context of this
family of experiments. We specifically selected perfective maintenance for two rea-
sons: (i) it appears to be one of the most commonly used types of maintenance
(systems are constantly evolving to become more complete and to offer more func-
tionalities); and (ii) the requirements of this type of maintenance could be easily
reproduced when using systems from well-known domains.

The family consisted of a controlled experiment and three replications carried out with
students from 3 different countries (The Netherlands, Spain, and Italy). The participants were
81 subjects with different abilities and levels of experience with the UML and with the Java
programming language (the experimental material is available at: http://alarcos.esi.uclm.es/
maintenanceUMLfamilyExperimentsLoD/).

214 Empir Software Eng (2016) 21:212–259

The main goal of this paper is to present a thorough description of this family of
experiments, the main findings and the practical implications.

This paper is organized as follows. The related work is presented in Section 2. Section 3
presents the family of the experiments, while the results obtained from the experiment and the
three replications are discussed in Section 4. The meta-analysis and the summary and
discussion of the data analysis are presented in Sections 5 and 6, respectively. The threats to
validity and the lessons learnt are highlighted in Section 7. The paper concludes in Section 8
with final remarks and future work.

2 Related Work

In (Fernández-Sáez et al. 2013b) a systematic mapping study of empirical studies concerning
the maintenance of UML diagrams and their use in the maintenance of code is presented. This
systematic mapping study discovered 38 papers (published from January 1997 to January
2010) containing 66 empirical studies (primary studies) related to this topic. Only the
following two works are directly related to the use of UML diagrams in source code
maintenance:

– In the work of Dzidek (Dzidek et al. 2008) an experiment was performed to investigate
whether the use of the UML influences maintenance in comparison to the use of source
code only. This experiment investigated the costs of maintaining and the benefits of using
UML documentation during the maintenance and evolution of a real nontrivial system,
using 20 professional developers as subjects. These developers had to perform 5 mainte-
nance tasks consisting of adding new functionalities to the existing system, and the
correctness, time and quality of the solution were measured. Both source code and
UML diagrams, when available, had to be maintained. The results of this work show a
positive influence of the presence of the UML for maintainers. In terms of time, the UML
subjects took longer if the UML documentation had to be updated, but that difference was
not statistically significant. However, the UML was always beneficial in terms of func-
tional correctness (introducing fewer faults into the software), because the subjects in the
UML group obtained, on average, a practically and statistically significant 54 % increase
in the functional correctness of changes. The UML also helped produce better quality
code when the developers were not yet familiar with the system. This experiment is a
replication of a previous work performed with students which is presented by Arisholm
(Arisholm et al. 2006) and obtains similar results. In our experiments we compare the
influence of two different kinds of UML diagrams on source code maintainability rather
than the presence of UML diagrams per se. Moreover, the UML diagrams in our
experiments do not need be updated.

– Arisholm et al. 2006) presented the results of a controlled experiment carried out to assess
the impact of UML design diagrams on software maintenance. Software professionals
were involved. The authors analyzed the time taken to perform the modifications to the
system, the time spent maintaining the models, and the quality of the modifications
performed. The results of the quantitative analysis revealed no significant difference in
the time spent making the modifications. Similarly to (Dzidek et al. 2008), they observed
that the quality of the modifications was higher for those participants who had been given
UML diagrams. As in (Dzidek et al. 2008), the participants’ ability and experience were
not analyzed as regards the comprehensibility and modifiability of source code. One
difference with regard to our study is that the authors analyzed the effect of UML based

Empir Software Eng (2016) 21:212–259 215

documentation (a use case diagram, sequence diagrams for each use case, and a class
diagram) on modification tasks performed both on UML diagrams and source code.

The remaining primary studies in the systematic mapping study were focused on the
understandability of UML diagrams. This topic is, in some respects, related to the understand-
ability of the system since one influences the other, but these kinds of studies are not
considered in this paper.

We updated the search period to August 2013 and found several additional empirical
studies that were to some extent related to the content of the present paper, and these are
described as follows:

– (Scanniello et al. 2013) used a family of controlled experiments to discover that the use of
UML analysis diagrams (those obtained in an early phase or the development process,
such as the requirements eliCitation or analysis phase) does not significantly improve the
comprehension and modifiability of source code with regard to the use of source code
alone. Analysis diagrams might be considered as low LoD diagrams while design
diagrams might be considered as high LoD diagrams. The most remarkable difference
between that paper and the work presented herein is that here we consider the UML
diagrams produced in the design phase with different levels of detail.

– In the work of Karahasanovic (Karahasanovic and Thomas 2007) the experiment per-
formed is focused on the comprehension and the difficulties involved in maintaining
object-oriented systems. During this experiment the subjects, who were 34 students in
their third year of a computer science degree, had to perform 3 different maintenance tasks
on a medium-size object-oriented system written in Java. The tasks were related to
extending, updating and deleting the functionalities of the system, i.e., maintaining the
system. It is important to note that the subjects had to give higher priority to the quality of
the solutions than to a shorter development time, which may have influenced the results of
the experiment. UML diagrams were also presented to the subjects of the experiment, and
the correctness of their solutions was measured, but this work was only focused on
exploring the participants’ strategies and problems while they were conducting mainte-
nance tasks on an object-oriented application. Two major groups of difficulties were
related to the comprehension of the application structure, namely the understanding of
GUI implementation and OO comprehension and programming.

– With regard to the influence of the LoD of UML diagrams in software development,
Nugroho presents an empirical experiment focused on the understandability of UML
diagrams with different LoDs (Nugroho 2009). The paper in question measures the
correctness and efficiency of 53 computer science Master’s degree students as regards
comprehending UML diagrams. The results show a better understanding of diagrams
when they have a high LoD. There are some differences between the work presented by
Nugroho and the family of experiments summarized in this paper. On the one hand, the
experiment presented by Nugroho focuses solely on the comprehension of UML diagrams
and the subjects did not have the source code of the system. On the other hand, Nugroho
focuses on their use in the development phase and not on maintenance.

– In a preliminary study by Scanniello (Scanniello et al. 2012) the results of an experiment
to assess whether the comprehension of source code is affected when it is added to UML
class and sequence diagrams produced in the design phase is presented. The results reveal
that the participants benefited from the use of UML diagrams. An average improvement
of 14 % was achieved when the participants accomplished the comprehension task with
the class and sequence diagrams, but the time needed to comprehend the code was not

216 Empir Software Eng (2016) 21:212–259

significantly influenced from a statistical point of view. Our work differs from that of
Scanniello (Scanniello et al. 2012) because we compare low LoD diagrams with high LoD
diagrams rather than with no UML diagrams, and the dependent variable is also different
because Scanniello’s work (Scanniello et al. 2012) focuses on the comprehension of the
source code and the work presented here is focused on the maintainability of source code.
Bigger systems are also used here.

– A comparison of the attitude and performance of maintainers when using Forward
Fesigned (FD) diagrams vs. Reverse Engineered (RE) diagrams during the maintenance
of source code is shown by Fernández-Sáez et al. (2013a, 2014) through a family of
controlled experiment with students (40, 51 and 78 respectively). The statistical results,
show a tendency to obtain better results when using UML diagrams (concretely class
diagrams), that were hand-made during the design phase. When considering the qualita-
tive results of the post-experiment survey, it was also noteworthy that the subjects
preferred FD diagrams when understanding and maintaining a system. The post-
experiment survey results also led the authors to conclude that the subjects found RE
diagrams, and particularly the sequence diagrams, difficult to understand.

All the related work is summarized in Table 1, thus providing the reader with an overview
of the main information in order to compare the empirical studies. The columns in the table are
described as follows:

– Ref: contains the reference to the paper that presents the empirical study considered.
– Type of empirical study: indicates the type of empirical study summarized in the paper (a

survey, an experiment, a family of experiments, etc.)
– Goal: describes the goal pursued by the empirical study.
– Subjects: presents the numbers of subjects who participated in the empirical studies and

the type of subjects (students, professionals, academic staff, etc.).
– Independent variables: describes the variables that are studied to ascertain their effect on

the dependent variables. The values (treatments) of the independent variables are also
presented.

– Dependent variables: presents the outcome variables, which are the variables that are
affected by the changes produced in the independent variables.

– Experiment design: contains the type of design selected, which can be between-subjects
(each subject receives only one treatment) or within subjects (each subject receives all the
treatments).

– Tasks: describes the tasks to be performed by the subjects as part of the empirical study.
– Results: reveals the main findings obtained.

The analysis of the literature presented above reveals that, with regard to the usefulness of
UML diagrams in helping during source code maintenance, empirical evidence is scarce (see
summary in Table 1). Nonetheless, the existing evidence shows that there is, to some extent, a
favorable tendency in that the use of UML diagrams benefits source code maintenance
(Arisholm et al. 2006; Dzidek et al. 2008).

The completeness of the documentation, which is significantly related to the level of detail
of a UML diagram, has been identified as one of the most important quality factors to affect the
overall quality of the documentation (Garousi et al. 2013). The influence of the different levels
of detail of UML diagrams during software development has been studied (Nugroho 2009),
but there are no clear results as to their influence on software maintenance because analysis
models do not influence maintenance (Scanniello et al. 2013) while design models do

Empir Software Eng (2016) 21:212–259 217

T
ab

le
1

Su
m
m
ar
y
of

re
la
te
d
w
or
ks

R
ef

Ty
pe

of
em

pi
ri
ca
l
st
ud
y

G
oa
l

Su
bj
ec
ts

In
de
pe
nd
en
t
va
ri
ab
le
s

D
ep
en
de
nt

va
ri
ab
le
s

E
xp
er
im

en
t
de
si
gn

Ta
sk
s

R
es
ul
ts

(D
zi
de
k

et
al
.2

00
8)

1
ex
pe
ri
m
en
t

To
in
ve
st
ig
at
e
w
he
th
er

th
e
us
e
of

U
M
L

in
fl
ue
nc
es

m
ai
nt
en
an
ce

in
co
m
pa
ri
so
n
to

th
e

us
e
of

on
ly

so
ur
ce

co
de
.

20
pr
of
es
si
on
al

de
ve
lo
pe
rs
.

T
he

us
e
of

U
M
L

do
cu
m
en
ta
tio
n
in

a
U
M
L
-s
up
po
rt
ed

ID
E

(p
os
si
bl
e
va
lu
es
:

pr
es
en
ce

or
ab
se
nc
e

of
U
M
L
di
ag
ra
m
s

ac
co
m
pa
ny
in
g

so
ur
ce

co
de
).

-T
im

e
ne
ed
ed

to
ch
an
ge

so
ur
ce

co
de
.

-T
im

e
ne
ed
ed

to
ch
an
ge

so
ur
ce

co
de
+
U
M
L

di
ag
ra
m
s.

-F
un
ct
io
na
l
co
rr
ec
tn
es
s

an
d
qu
al
ity

of
th
e

so
lu
tio
n.

B
et
w
ee
n-
su
bj
ec
t

de
si
gn
.

M
od
if
ic
at
io
n
ta
sk
s
in

so
ur
ce

co
de

an
d
in

U
M
L
di
ag
ra
m
s.

T
he

U
M
L
su
bj
ec
ts
to
ok

m
or
e
tim

e
if
th
e
U
M
L

do
cu
m
en
ta
tio
n
w
as

to
be

up
da
te
d.
U
M
L
w
as

al
w
ay
s
be
ne
fi
ci
al
in

te
rm

s
of

fu
nc
tio
na
l

co
rr
ec
tn
es
s.

U
M
L

al
so

he
lp
ed

pr
od
uc
e

be
tte
r
qu
al
ity

co
de

w
he
n
th
e
de
ve
lo
pe
rs

w
er
e
no
t
ye
t
fa
m
ili
ar

w
ith

th
e
sy
st
em

.

(A
ri
sh
ol
m

et
al
.2

00
6)

2
ex
pe
ri
m
en
ts

To
in
ve
st
ig
at
e
w
he
th
er

th
e
us
e
of

U
M
L

in
fl
ue
nc
es

m
ai
nt
en
an
ce

in
co
m
pa
ri
so
n
to

th
e

us
e
of

on
ly

so
ur
ce

co
de
.

U
nd
er
gr
ad
ua
te

st
ud
en
ts
(2
2

an
d
76
,

re
sp
ec
tiv
el
y)
.

T
he

us
e
of

U
M
L

do
cu
m
en
ta
tio
n
in

a
U
M
L
-s
up
po
rt
ed

ID
E

(p
os
si
bl
e
va
lu
es
:

pr
es
en
ce

or
ab
se
nc
e

of
U
M
L
di
ag
ra
m
s

ac
co
m
pa
ny
in
g

so
ur
ce

co
de
).

-T
im

e
ne
ed
ed

to
ch
an
ge

so
ur
ce

co
de
.

-T
im

e
ne
ed
ed

to
ch
an
ge

so
ur
ce

co
de
+
U
M
L

di
ag
ra
m
s.

-C
or
re
ct
ne
ss

of
th
e

ch
an
ge
.

-Q
ua
lit
y
of

th
e
ch
an
ge
.

B
et
w
ee
n-
su
bj
ec
t

de
si
gn
.

M
od
if
ic
at
io
n
ta
sk
s
in

so
ur
ce

co
de

an
d
in

U
M
L
di
ag
ra
m
s.

T
he

U
M
L
su
bj
ec
ts
to
ok

m
or
e
tim

e
if
th
e
U
M
L

do
cu
m
en
ta
tio
n
w
as

to
be

up
da
te
d.
U
M
L
w
as

al
w
ay
s
be
ne
fi
ci
al
in

te
rm

s
of

fu
nc
tio
na
l

co
rr
ec
tn
es
s.
U
M
L
al
so

he
lp
ed

pr
od
uc
e
be
tte
r

qu
al
ity

co
de

w
he
n
th
e

de
ve
lo
pe
rs
w
er
e
no
t

ye
t
fa
m
ili
ar

w
ith

th
e

sy
st
em

.

(S
ca
nn
ie
llo

et
al
.2

01
3)

Fa
m
ily

of
ex
pe
ri
m
en
ts

(1
+
3)

To
in
ve
st
ig
at
e
w
he
th
er

th
e
us
e
of

U
M
L

m
od
el
s
pr
od
uc
ed

in
th
e
re
qu
ir
em

en
ts

an
al
ys
is
pr
oc
es
s

he
lp
s
in

th
e

co
m
pr
eh
en
si
bi
lit
y

an
d
m
od
if
ia
bi
lit
y

of
so
ur
ce

co
de
.

U
nd
er
gr
ad
ua
te

st
ud
en
ts
(2
4,

22
,2

2
an
d
18
,

re
sp
ec
tiv
el
y)
.

T
he

us
e
of

U
M
L

an
al
ys
is
m
od
el
s

(p
os
si
bl
e
va
lu
es
:

pr
es
en
ce

or
ab
se
nc
e

of
U
M
L
di
ag
ra
m
s

ac
co
m
pa
ny
in
g

so
ur
ce

co
de
).

-C
om

pr
eh
en
-s
io
n
le
ve
l

of
th
e
so
ur
ce

co
de
.

-C
ap
ab
ili
ty

of
a

m
ai
nt
ai
ne
r
to

m
od
if
y
so
ur
ce

co
de
.

W
ith
in

pa
rt
ic
ip
an
ts

co
un
te
rb
al
an
-

ce
d
ex
pe
ri
m
en
-

ta
l
de
si
gn
.

C
om

pr
eh
en
si
on

an
d

m
od
if
ic
at
io
n
ta
sk
s

an
d
su
bj
ec
tiv
e

qu
es
tio
ns
.

U
M
L
m
od
el
s
pr
od
uc
ed

in
th
e
re
qu
ir
em

en
ts

an
al
ys
is
pr
oc
es
s

in
fl
ue
nc
e
ne
ith
er

th
e

co
m
pr
eh
en
si
bi
lit
y
of

so
ur
ce

co
de

no
r
its

m
od
if
ia
bi
lit
y.

(N
ug
ro
ho

20
09
)

1
ex
pe
ri
m
en
t

To
de
te
rm

in
e
th
e

in
fl
ue
nc
e
of

11
un
de
rg
ra
du
at
e

st
ud
en
ts
.

T
he

le
ve
l
of

de
ta
il
of

U
M
L
di
ag
ra
m
s

-U
nd
er
st
an
d-
ab
ili
ty

of
so
ur
ce

co
de
.

B
et
w
ee
n-
su
bj
ec
ts

ba
la
nc
ed

de
si
gn
.

C
om

pr
eh
en
si
on

an
d

m
od
if
ic
at
io
n
ta
sk
s

N
o
si
gn
if
ic
an
t
re
su
lts

in
fa
vo
r
of

hi
gh

or
lo
w

218 Empir Software Eng (2016) 21:212–259

T
ab

le
1

(c
on
tin

ue
d)

R
ef

Ty
pe

of
em

pi
ri
ca
l
st
ud
y

G
oa
l

Su
bj
ec
ts

In
de
pe
nd
en
t
va
ri
ab
le
s

D
ep
en
de
nt

va
ri
ab
le
s

E
xp
er
im

en
t
de
si
gn

Ta
sk
s

R
es
ul
ts

di
ff
er
en
t
le
ve
ls
of

de
ta
il
(L
oD

)
of

U
M
L
di
ag
ra
m
s

in
so
ur
ce

co
de

m
ai
nt
en
an
ce
.

(p
os
si
bl
e
va
lu
es
:

hi
gh

or
lo
w

L
oD

).
-M

od
if
ia
bi
lit
y
of

so
ur
ce

co
de
.

an
d
su
bj
ec
tiv
e

qu
es
tio
ns
.

L
oD

.T
he
re

is
a
sl
ig
ht

te
nd
en
cy

in
fa
vo
r
of

lo
w

L
oD

di
ag
ra
m
s.

(K
ar
ah
as
an
ov
ic

an
d
T
ho
m
as

20
07
)

1
ex
pe
ri
m
en
t

To
in
ve
st
ig
at
e
th
e

co
m
pr
eh
en
si
on

an
d

th
e
di
ff
ic
ul
tie
s

in
vo
lv
ed

in
m
ai
nt
ai
ni
ng

ob
je
ct
-

or
ie
nt
ed

sy
st
em

s.

34
un
de
rg
ra
du
at
e

st
ud
en
ts
.

-
-C
om

pr
eh
en
-s
io
n

of
sy
st
em

.
-M

od
if
ic
at
io
n

of
sy
st
em

s.

B
et
w
ee
n-
su
bj
ec
t

de
si
gn
.

M
od
if
ic
at
io
n

qu
es
tio
ns
.

D
et
ec
tio
n
of

co
m
m
on

di
ff
ic
ul
tie
s
as

re
ga
rd
s

un
de
rs
ta
nd
in
g
w
he
n

m
ai
nt
ai
ni
ng

so
ft
w
ar
e

sy
st
em

s.

(S
ca
nn
ie
llo

et
al
.2

01
2)

1
ex
pe
ri
m
en
t

To
in
ve
st
ig
at
e
w
he
th
er

th
e
co
m
pr
eh
en
si
on

of
so
ur
ce

co
de

in
cr
ea
se
s
w
he
n

pa
rt
ic
ip
an
ts
ar
e

pr
ov
id
ed

w
ith

U
M
L

cl
as
s
an
d
qs
eq
ue
nc
e

di
ag
ra
m
s
pr
od
uc
ed

in
th
e
so
ft
w
ar
e

de
si
gn

ph
as
e.

16
un
de
rg
ra
du
at
e

st
ud
en
ts
.

T
he

us
e
of

se
qu
en
ce

an
d

cl
as
s
di
ag
ra
m
s
cr
ea
te
d

in
th
e
de
si
gn

ph
as
e

(p
os
si
bl
e
va
lu
es
:

pr
es
en
ce

or
ab
se
nc
e

of
U
M
L
di
ag
ra
m
s

ac
co
m
pa
ny
in
g

so
ur
ce

co
de
).

-C
om

pr
eh
en
-s
io
n

of
so
ur
ce

co
de
.

W
ith

in
-s
ub
je
ct
s.

C
om

pr
eh
en
si
on

qu
es
tio
ns
.

Pa
rt
ic
ip
an
ts
co
m
pr
eh
en
d

so
ur
ce

co
de

si
gn
if
ic
an
tly

be
tte
r

w
he
n
cl
as
s
an
d

se
qu
en
ce

di
ag
ra
m
s

ar
e
ad
de
d
to
ge
th
er
.

Empir Software Eng (2016) 21:212–259 219

(Scanniello et al. 2012). What is more, the design diagrams obtained good results when
compared to reverse engineered diagrams (Fernández-Sáez et al. 2014). In our case, we are
of the opinion that low LoD diagrams are similar to analysis models, while high LoD diagrams
are comparable to design models. The issues that are taken into account to state this similarity
are explained in section 3.1. Given that analysis diagrams are more similar to low LoD
diagrams and that design diagrams are more similar to high LoD diagrams, better results are
expected when using high LoD diagrams.

The research presented in this paper is different from previous research because it pursues a
different goal. In particular, we aim to discover whether high LoD diagrams help maintainers
to better understand the system and perform the modifications that need to be made to the
source code during the maintenance phase in comparison with low LoD diagrams. We shall
thus contribute, to some extent, towards building up the body of knowledge regarding the
evidence of the benefits of using UML.

3 The Family of Experiments

Families of experiments allow researchers to answer questions that are beyond the scope of
individual experiments and permit the generalization of the findings from various studies, thus
providing evidence with which to confirm or reject specific hypotheses (Basili et al. 1999).
Replications of empirical studies might be regarded as an essential activity in the construction of
knowledge in any empirical science based on the following propositions: “We do not take even our
own observations quite seriously, or accept them as scientific observations, until we have repeated
and tested them” (Pressman 2005) and “… [replication] is needed not merely to validate one’s
findings, but more importantly, to establish the increasing range of radically different conditions
under which the findings hold, and the predictable exceptions” (Lindsay and Ehrenberg 1993).

We carried out a family of experiments to investigate whether the different levels of detail
(LoD) affect the work that must be carried out by a maintainer. The main goal of this paper is
to present a family of experiments that consists of one experiment and three external
replications. Figure 1 provides some information (i.e., the name of the experiment, the number
of participants, and the context) about the experiments and their chronology.

In this family of experiments the participants were undergraduate/graduate students from
different years of the Bachelor’s or Master’s Computer Science degree. The original experi-
ment (denominated as E-UL) was carried out at the University of Leiden (The Netherlands) in
March 2010. The first replication (denominated as R1-UCLM) was performed at the

Fig. 1 Chronology of the family of experiments

220 Empir Software Eng (2016) 21:212–259

University of Castilla-La Mancha (Spain) in April 2010. Two more replications (denominated
as R2-UB and R3-UB, respectively) were carried out in May 2010 at the University of Bari
(Italy).

The original experiment (E-UL) was performed as a pilot study with a small number of
subjects, in order to obtain an initial insight into the influence of the LoD (Fernández-Sáez
et al. 2012 Does the Level of Detail of UML Models Affect the Maintainability of Source
Code? Proceedings of the Experiences and Empirical Studies in Software Modelling
Workshop EESSMod’11 at MODELS 2011). We decided to corroborate the results obtained
by carrying out a series of external replications. These experiments can be considered as strict
replications of the original experiment because the essential aspects of the experimental
conditions have not varied in any way: the only difference is the participants involved.

In order to run and report this family of experiments, we followed the recommendations and
guidelines for conducting and reporting empirical research in software engineering provided in
several works (Wohlin et al. 1999; Juristo andMoreno 2001; Jedlitschka et al. 2008; Carver 2010).
For replication purposes, we created an experimental package containing the experimental material,
which is available at: http://alarcos.esi.uclm.es/maintenanceUMLfamilyExperimentsLoD/

The main characteristics of each experiment and the replications are described in the
following subsections, including goal, context selection, variables selection, hypothesis for-
mulation, experimental design, experimental tasks, experimental procedure, analysis procedure
and documentation and communication.

3.1 Goal

The main goal of the family of experiments, using the GQM template (Basili and Weiss 1984;
Basili et al. 1999), is to: “Analyze the level of detail in UML diagrams with the purpose of
evaluating it with regard to the understandability and modifiability of source code during a
model-centric development from the point of view of researchers, in the context of Computer
Science undergraduate/graduate students at the following Universities: University of Leiden,
University of Castilla-La Mancha and University of Bari”.

As in (Nugroho 2009), we considered that the LoD in UML diagrams should be defined as
the amount of information that is used to represent a modeling element. LoD is a ‘continuous’
metric, but in the experiment we have taken two “extremes” - high and low LoD. Based on the
LoD concept, one of our main assumptions is that the more information a diagram contains,
the more is known about the concepts/knowledge described in the diagram. This knowledge
would help maintainers to better understand the source code of the system and consequently
modify it according to the maintenance requirements.

We decided to use 3 different types of diagrams (use case, sequence and class
diagrams) since they are those most frequently used (Grossman et al. 2005; Dobing
and Parsons 2006; Erickson and Siau 2007). When the LoD used in a UML diagram
is low, it typically contains only a few syntactical features, such as class-name and
associations, without specifying any further facts about the class. When it is high, the
diagram also includes class attributes and operations, association names, association
directionality, and multiplicity. In sequence diagrams, in which there is a low LoD,
the messages among objects have an informal label, and when the LoD is high the
label is a method name plus the parameter list. We do not consider that it is possible
to distinguish between low and high LoD in use case diagrams because they are very
simple diagrams, so both groups received the same set of diagrams. The elements that
fit each level of detail are detailed in Table 2, and an example of the two versions of
a class diagrams is shown in the Appendix.

Empir Software Eng (2016) 21:212–259 221

3.2 Context Selection

The experimental material used in E-UL was in English. However, the material was translated
for the replications. A native Spanish speaker translated all the material into Spanish in the case
of R1-UCLM, while a native Italian speaker translated all the material into Italian in the case of
R2-UB and R3-UB. The replicators supported the native speakers and helped them when
needed (e.g., in the translation of technical terms).

Two experimental objects were used:

& System A: a library application from which a user can borrow books.
& System B: a sport center application from which users can rent services (tennis courts, etc.)

System A is a library extracted from (Ericksson et al. 2004). We decided to use this because
it was a representative system, it was complete (source code and diagrams were available) and
it gave us a starting point with which to compare our results. It was only possible to compare
the results obtained from the subjects who received System Awith a high LoD with the result
from (Karahasanovic and Thomas 2007) because the material received was the same (although
the tasks were different). The other treatments, i.e., the documents related to System Awith a
high LoD, were created by us for the experiment). The source code in System A contains 3,369
lines of code and the documentation consists of 5 use case diagrams with 17 use cases, 5 class
diagrams with 25 classes and 15 sequence diagrams with 242 messages (Table 3).

System B is a Sport center application created as part of the Master’s degree Thesis of a
student from the University of Castilla-La Mancha. The source code in System B contains
5,123 lines of code and the documentation consists of 5 use case diagrams with 22 use cases, 4
class diagrams with 16 classes and 21 sequence diagrams with 226 messages (Table 3).

Table 2 Levels of detail in UML diagrams

Diagram Element Low LoD High LoD

Class diagram Classes (box and name) ✓ ✓

Attributes ✗ ✓

Types in attributes ✗ ✓

Operations ✗ ✓

Parameters in operations ✗ ✓

Associations ✓ ✓

Association directionalities ✗ ✓

Association multiplicities ✗ ✓

Aggregations ✓ ✓

Compositions ✓ ✓

Sequence diagram Actors ✓ ✓

Objects ✓ ✓

Messages in informal language ✓ ✗

Messages with formal language (name of a method) ✗ ✓

Parameters in messages ✗ ✓

Labels in return messages ✗ ✓

Use case diagrams They were the same for both treatments because they do not contain enough
details to distinguish between Low or High LoD

222 Empir Software Eng (2016) 21:212–259

Both systems are desktop applications from well-known domains and are more or less the
same size, based on the metrics mentioned below. Owing to their origins and size we consider
them as small systems, based on to the size classification given in (Scanniello et al. 2010). The
documentation of both systems can be considered to be sufficiently realistic for small-sized
development projects of the following kinds: in-house software (the system is developed inside
the software company for its own use) or sub-contracted (a sub-contractor develops or delivers
part of a system to a main contractor) (Lauesen 2002). They can also be considered as realistic
systems because they were written in Java, which is one of the most common programming
languages used in companies (based in our experience). We considered well-known domains
in order to avoid the extra cognitive effort required in the case of non-well-known domains,
which might have biased the results.

As explained previously, the documentation of System Awas extracted from a book about
UML (Ericksson et al. 2004) from which the RUP (Rational Unified Process) process is
taught, and it was therefore expected that the diagrams would be created by following that
modeling process. System B, meanwhile, was created as part of a Master’s degree Thesis by
following an RUP process. In both cases, therefore, the diagrams and the source code were
developed by adopting an incremental development process similar to that suggested by
Bruegge and Dutoit (2010). In both cases the diagrams were created with the intention of
supporting the understanding of the system and guiding the implementation of the source code
within the aforementioned model-centric development processes but the intention was not
related to the automatic generation of source code from it. As in the majority of developments
of this kind, the diagrams were available in order to provide insights into how the system had
been created and to increase the understandability in possible further maintenance. UML
diagrams may therefore provide a “lens” for the code that may assist with maintenance tasks,
but it is important to highlight that the UML diagrams used during a model-centric develop-
ment would not faithfully represent the reality of the source code.

In order to check the material used in the experiment, one of the authors first
reviewed the documentation of the two systems to find possible issues. No modifica-
tions of any note were needed to improve either the documentation (e.g., typograph-
ical errors from the models were removed) or the source code (e.g., the source code
was indented). Next, and with the intention of checking the complexity and duration
of the experiment, a pilot study was carried out with 3 PhD students from the
University of Leiden and 2 PhD students from the University of Castilla-La
Mancha. Owing to the fact that the intended participants in the family of experiments
would have less experience than those who took part in in the pilot study (Master’s
Degree students and PhD students respectively), we decided to provide more time in
the execution of the experiments than in the pilot. Based on the results of these two
pilots, we considered that the two experimental objects fitted the time constraints of
the experiment while being sufficiently realistic as regards the small maintenance
operations that novice software maintainers perform within a software company
(Cohen et al. 2004).

Table 3 Description of the systems received

#Class
diagrams

#classes #Sequence
diagrams

#messages #Use case
diagrams

#use cases LoC

System A 5 25 15 242 5 17 3,369

System B 4 16 21 226 5 22 5,123

Empir Software Eng (2016) 21:212–259 223

The experimental material delivered to the subjects consisted of the UML diagrams (use
case, class and sequence diagrams) and the JAVA code of Systems A and B, the paper-based
answer sheets and the post-experiment questionnaire.

We conducted all the experiments in research laboratories under controlled conditions. The
subjects’ knowledge was sufficient for them to understand the systems provided, and they had
roughly the same background. The participants, who were grouped by experiment, had the
following characteristics:

& E-UL: The experiment was carried out by 11 Computer Science students from the
University of Leiden (The Netherlands) who were taking the Software Engineering
course in the second-year of their B.Sc. Almost all the students were non-
repeating course students (only one was repeating the course) and virtually none
of them had any industrial experience (one had experience as a programmer and
another as a designer). Their knowledge of UML diagrams was general and had
been acquired during the Software Engineering course. Based on their responses to
the preliminary test, which contained background questions, we assumed that most
of the subjects considered their own UML knowledge to be medium for use case
and class diagrams, and low for sequence diagrams. Moreover, most of the
subjects’ knowledge of JAVA language was medium/high, while all their knowl-
edge of C++ language was medium/high, and this language is very similar to
JAVA. Their knowledge of UML and JAVA was reinforced in a training session on
UML diagrams and JAVA organized to take place the day before the experiment
was carried out.

& R1-UCLM: The first replication was carried out by 16 Computer Science students
from the University of Castilla-La Mancha (Spain) who were taking the Quality of
Information Systems course in the second year of their Master’s . More than 80 %
of the students were non-repeating course students and virtually none of them had
any industrial experience (three had experience as programmers and another as a
maintainer). Their knowledge of UML diagrams had been acquired during other
courses (such as Software Engineering I and Software Engineering II). The
subjects’ responses in the preliminary test again showed that most of them
considered their own UML knowledge to be medium/high for use case, class
and sequence diagrams. All of them had medium/high knowledge of JAVA
language, and they also had knowledge of C and C++ languages which are very
similar languages to JAVA. Their knowledge of UML and JAVA was reinforced in
a training session on UML diagrams and JAVA organized to take place the day
before the experiment was carried out.

& R2-UB: The second replication was carried out by 32 Computer Science students
from the University of Bari (Italy) who were taking the Software Engineering
course in the second year of their B.Sc. Three quarters of the students were non-
repeating course students and virtually none of them had any industrial experience
(two has experience as programmers). Their knowledge of UML diagrams was
general and had been acquired during the Software Engineering course. The
responses provided in the preliminary test led us to assume that most of the
subjects considered their own UML knowledge to be medium/high for class
diagrams, and medium/low for use case and sequence diagrams. Almost half of
them considered their knowledge of JAVA language to be medium/high, while the
rest considered it to be low. In addition, almost all of them considered their
knowledge of C and C++ languages to be medium/high, and these languages are

224 Empir Software Eng (2016) 21:212–259

very similar to JAVA. Their knowledge of UML and JAVA was reinforced in a
training session on UML diagrams and JAVA organized to take place the day
before the experiment was carried out.

& R3-UB: The third replication was carried out by 22 Computer Science students from the
University of Bari (Italy) who were taking the Software Engineering course in the second
year of their B.Sc. 80 % of the students were non-repeating course students and virtually
none of them had any industrial experience (three had experience as programmers and
another as a maintainer). Their knowledge of UML diagrams was general and had been
acquired during the Software Engineering course. Most of the subjects considered their
own UML knowledge to be medium/high for use case and class diagrams, and medium/
low for sequence diagrams (based on the results of the preliminary test). Most of them
considered their knowledge of JAVA language to be medium/high, while half of them
considered their knowledge of C and C++ languages to be medium/high, and these
languages are very similar to JAVA. Their knowledge of UML and JAVAwas reinforced
in a training session on UML diagrams and JAVA organized to take place the day before
the experiment was carried out. The students who participated in the whole family of
experiments were volunteers who were selected for convenience (the students available in
the corresponding course). The subjects who participated in the experiment were not
graded on their performance, and they obtained extra points in their final marks.

The participants selected were students in their last academic year because they can be
considered as novice software engineers in real companies. They were required to work as
individual maintainers.

3.3 Selection of Variables

The independent variable (also called the “main factor”) is the LoD, which is a nominal
variable with two values: low LoD and high LoD.

The dependent variables are:

& Modifiability, denoting the capability of the source code to be modified by a software
engineer (modeler, designer, maintainer, etc.).

& Understandability, denoting the capability of the source code to be comprehended by a
software engineer (modeler, designer, maintainer, etc.).

These two variables were selected because understandability and modifiability are consid-
ered in literature to have a direct influence on maintainability (Arisholm et al. 2006; Cruz-
Lemus et al. 2010; Roehm et al. 2012; ISO/IEC 2014). The following measures were defined
in order to measure these dependent variables:

& Understandability Effectiveness (UEffec): This measure reflects the ability to correctly
understand the system presented. It is calculated with the following formula: number of
correct answers / number of questions.

& Modifiability Effectiveness (UEffic): This measure reflects the ability to correctly modify
the system presented. It is calculated with the following formula: number of correctly
performed modification tasks / number of modification tasks.

& Understandability Efficiency (MEffec): This measure also reflects the ability to correctly
understand the system presented. It is calculated with the following formula: number of
correctly answered questions / time spent.

Empir Software Eng (2016) 21:212–259 225

& Modifiability Efficiency (MEffic): This measure also reflects the ability to correctly
modify the system presented. It is calculated with the following formula: number of
correctly performed tasks / time spent.

These measures were applied to the responses obtained from a questionnaire composed of 3
understandability questions and 3 modifiability questions (further details of this are provided in
Section 3.6) in order to obtain a quantitative evaluation of these dependent variables. A higher
value of the measures reflects a better understandability/modifiability.

Additional independent variables (called “co-factors”) were considered according to the
experimental design selected, and their effect was controlled and analyzed:

& Order. We analyzed whether the order in which the LoD were used by the subjects biased
the results. This was analyzed because of the design selected (see Table 4), i.e., the
variation in the order of application of each method (low LoD, high LoD), which was
used with the intention of alleviating learning effects.

& System. This factor indicates the systems (i.e., A and B) used as experimental objects. The
design selected for the experiment (see Table 4) forced us to choose two application
domains in order to avoid learning effects. Although our intention was that the systems
used would not be a confounding factor owing to their size similarities and domains, this
might not have been that case, and the system might have influenced the subjects’
performances. We therefore studied the effect of the systems used on the results obtained.
The following diagrams were used during the experiment:

& A-H: high LoD diagrams of system A.
& A-L: low LoD diagrams of system A.
& B-H: high LoD diagrams of system B.
& B-L: low LoD diagrams of system B.

& Ability. A quantitative assessment of the participants’ ability was obtained by computing the
average of the grades of the courses taken. The students from the University of Leiden and
Castilla La Mancha with average grades below 8/10 (a 5 is needed to pass the course) were
classified as low ability participants, otherwise high. In the replications conducted with
students at the University of Bari, the threshold was 27/30. Students with average grades
below 27/30 (an 18 is needed to pass the course) were therefore classified as low, otherwise
high. We used different threshold values in the experiments conducted in The Netherlands,
Spain and Italy because different grading systems are used in these countries. We considered
this cofactor in our efforts to investigate whether subjects’ abilities play any role in the
maintenance of source code, i.e., we discriminated between users according to their respec-
tive levels of Ability with the purpose of testing the hypothesis that this is a relevant
influencing factor that should be taken into account when adopting these kinds of diagrams.

Table 4 Experimental design

RUN 1 LoD RUN 2 LoD

Low High Low High

System A Group 1 Group 2 System A Group 3 Group 4

B Group 3 Group 4 B Group 2 Group 1

226 Empir Software Eng (2016) 21:212–259

3.4 Hypotheses Formulation

Based on the assumption explained above, that the more information a diagram contains, the
more is known about the concepts/knowledge described in the diagram, the following 4 null
hypotheses have been formulated and tested:

H1,0: There is no significant difference in the subjects’ understandability effectiveness
when working with UML diagrams modeled using high or low levels of detail.
H2,0: There is no significant difference in the subjects’ understandability efficiency when
working with UML diagrams modeled using high or low levels of detail.
H3,0: There is no significant difference in the subjects’ modifiability effectiveness when
working with UML diagrams modeled using high or low levels of detail.
H4,0: There is no significant difference in the subjects’ modifiability efficiency when
working with UML diagrams modeled using high or low levels of detail.

The goal of the statistical analysis will be to reject these null hypotheses and possibly to
accept the alternative ones (e.g., Hn1=¬ Hn0). All the hypotheses are two sided because we
did not postulate that any effect would occur as a result of the LoD.

3.5 Experimental Design

When designing the experiment we attempted to alleviate several issues that might threaten the
validity of the research being carried out by considering the suggestions provided in (Wohlin
et al. 1999). We selected a balanced factorial design in which the group-interaction acted as a
confounding factor (Kirk 1995). This ensured that each subject worked on different experi-
mental objects (System A or B) in two runs, using a different LoD (High or Low) each time.
This design permits learning and fatigue effects to be mitigated and allows the effect of
cofactors to be studied. Table 4 presents the outline of the experimental design.

All the experiments are balanced with regard to the number of participants assigned to the
method (LoD). The assignment of the subjects to each group was performed by using Ability
as a balancing factor, i.e., before carrying out the experiment or the replications we provided
the subjects with a background questionnaire and assigned them to the 4 groups, randomly
distributing experience equally throughout the groups (blocked design by experience) in an
attempt to alleviate experience effects.

3.6 Experimental Tasks

We asked the subjects to perform the following three kinds of tasks (all of them written on
paper and not using computers):

– Understandability tasks: This block of tasks consisted of answering 3 multiple choice
questions concerning the semantics of the system, i.e., the semantics of diagrams and the
semantics of code. These questions were multiple choice questions and were used to
obtain UEffec and UEffic. An example of this kind of question is shown in Fig. 2. Each of
these tasks had a score of 1 point when correct and 0 when false.

– Modifiability tasks: The intention of these tasks, which are also called perfective
maintenance tasks, was to extend the functionality of the system and to improve the
services provided (Lientz and Swanson 1980). In our case, new functionalities had to be
added to the system, with the subjects receiving a list of 3 independent new requirements

Empir Software Eng (2016) 21:212–259 227

(Table 5) which had to be addressed by modifying the system code and thus adding/
changing certain functionalities.

Neither of the systems used had special maintenance needs because they were not used in
production, and the maintenance tasks were therefore created specifically for this family of
experiments. We attempted to create a list of requirements by adding functionalities that
seemed to be logical requirements (owing to the fact that they had come from well-known
domains). We choose these types of maintenance tasks because they are frequent in real
environments and they are also doable by individual maintainers in the time with which the
participants were provided. Other types of maintenance, like corrective maintenance (i.e.,
activities intended to remove errors or bugs from the software), might be more frequent but
could require a lot of time to detect where it is necessary to work in the case of isolated
maintainers. These tasks were used to calculate the modifiability measures (MEffec and
MEffic). The results of these modifiability tasks have different complexities: from adding/
changing a couple of lines of code to adding the source code of a complete class. The
modifiability tasks needed to be answered by using data collection forms, i.e., templates or
answer sheets which had to be filled in with pieces of code. We used these data collection
forms to obtain a structured response which facilitated the correction of the results. The
subjects were provided with answer sheets to allow them to structure their responses related
to the maintenance tasks. The reason for doing this was that maintaining source code on paper
is not easy owing to space constraints, so the subjects were required to write changes to the

Fig. 2 Example of Understandability task

Table 5 Summary of modifiability tasks

System Task Summary of modifiability task descriptions Maximum mark (in points)

A T1 The library system should store its borrowers’ emails. 4

T2 A ticket showing a borrower’s loans at a specific time
should be generated by the system.

5

T3 The information about requests to buy new titles should
be stored by the system.

6

B T1 The sport center system should store its
customers’ telephone numbers.

4

T2 A ticket showing a customer’s reservations at a specific
time should be generated by the system.

5

T3 The information about the sport center’s instructors
should be stored by the system.

6

228 Empir Software Eng (2016) 21:212–259

source code in a structured manner on the answer sheets (format: line-number, change type,
Java code, etc.). They had to fill in a different form depending on the element that they wished
to maintain (a class, an attribute, etc.). An example of one of the tasks is shown on Fig. 3.

The other tasks, along with all the material used in the experiment, are available at: http://
alarcos.esi.uclm.es/maintenanceUMLfamilyExperimentsLoD/. The greatest change consisted
of adding a class which would need the declaration of at least 22 new statements. In general,
between 1 and 3 classes needed to be modified. The complexity of the tasks might not appear
to be too complex owing to the number of necessary statements that have to be changed, but
the complexity of the task lies in the difficulty involved in detecting where the change to the
source code should be made, along with how it should be carried out. It should also be borne in
mind that 6 tasks (3 understandability and 3 modifiability tasks) had to be completed in 2 h,
using systems that the subjects had never seen before. We limited the time of the experiment to
fit in with the subjects’ time availability. They were only required to maintain the source code,
i.e., they did not need to update diagrams according to their changes or to create test cases.

& Post-experiment tasks: At the end of the execution of each run, the subjects were
additionally asked to fill in a post-experiment questionnaire consisting of 15 questions
(see Table 6) whose goal was to obtain feedback about the subjects’ perception of the
experiment execution, which could be used to explain the results obtained. The answers to
the questions were based on a five-point Likert scale (Oppenheim 2000) or multiple choice
questions.

3.7 Experimental Procedure

In order to check the material and the duration of the experiment, a pilot study was carried out
with 3 PhD students from the University of Leiden before carrying out the actual experiment
(Fernández-Sáez et al. 2012 Does the Level of Detail of UML Models Affect the
Maintainability of Source Code? Proceedings of the Experiences and Empirical Studies in
Software Modelling Workshop EESSMod’11 at MODELS 2011). The results of the pilot
study were used as a basis to adapt the number of tasks and their complexity to the
experimental time constraints. Some spelling mistakes were also corrected, and some require-
ment statements were rewritten in order to make them more understandable. A pilot experi-
ment took place before each replica in order to check that the material had been correctly
translated. The Spanish version of the material was checked by 2 PhD students at the

Fig. 3 Example of Modifiability tasks for System B

Empir Software Eng (2016) 21:212–259 229

University of Castilla-La Mancha, and the Italian version was checked by one member of the
University of Bari’s academic staff.

The experiment and replications took place in two sessions of 2 h each:

& Training session: The subjects first attended a training session in which detailed instruc-
tions on the experiment were presented and the main concepts of UML and JAVA were
revised. No details of the experimental hypotheses were provided in this session, and the
subjects carried out an exercise similar to those in the experimental tasks in collaboration
with the instructor. During the training session, the subjects were required to fill in a
background questionnaire. The participants were informed that the data collected in the
experiments would be used for research purposes and treated confidentially, and that their
grade on the course they were taking would not be affected by the grade obtained in the
experiment. After the training session, we assigned the participants to one of the 4 groups
in accordance with the marks obtained in the background questionnaire, thus obtaining
balanced and homogeneous groups (see Table 4).

& Execution session: The execution of the experiment took place in the second session, in a
classroom, in which the students were supervised by the course instructor (a different one
depending on the replication) and one experimenter (always the same one). This second
session consisted of two runs, as is required by the selected experimental design shown in

Table 6 Post experiment questions

Id Question/Issue Possible answers

Q1 The difficulty of the tasks (1–5)

Q2 The training was sufficient to be able to perform the tasks (1–5)

Q3 The clarity of the material provided (1–5)

Q4 The task objectives were perfectly clear to me (1–5)

Q5 The tasks I performed were perfectly clear to me (1–5)

Q6 I did not experience difficulty in reading the diagrams (1–5)

Q7 I did not experience difficulty in reading the source code (1–5)

Q8 The use of high level of detail UML diagrams helps in maintenance tasks (1–5)

Q8.1 The use of attributes in class diagrams help you to perform
maintenance tasks

(1–5)

Q8.2 The use of operations in class diagrams help you to perform
maintenance tasks

(1–5)

Q8.3 The use of formal method names in messages in sequence diagrams
help you to perform maintenance tasks

(1–5)

Q8.4 The use of parameters in messages in sequence diagrams help you to
perform maintenance tasks

(1–5)

Q9 How much time (as a percentage) did you spend looking at the diagrams
in order to perform the software maintenance?

Multiple choice question

Q10 How much time (as a percentage) did you spend source code browsing? Multiple choice question

Q11 The time for performing the experiment was adequate Multiple choice question

1=strongly agree; 2=agree; 3 neutral; 4=disagree; 5=strongly disagree (Q2, Q4 - Q8.4)

1=very difficult; 2=difficult; 3=medium; 4=easy; 5=very easy (Q1)

1=very clear; 2=clear; 3=correct; 4=unclear; 5=very unclear (Q3)

A=more time needed; B=less time needed; C=enough time (Q11)

A. <20 %; B. >=20 and <40 %; C. >=40 and <60 %; D. >=60 and <80 %; E. >=80 % (Q9, Q10)

230 Empir Software Eng (2016) 21:212–259

Table 4. In each run, each of the groups was given a different treatment, i.e., they first
received the material for the first run, and when they had finished, they received
the first post-experiment questionnaire. After filling in the post-experiment ques-
tionnaire, the material for the second run was provided. When the second run had
finished, the subjects received the last post-experiment questionnaire. The partic-
ipants were not allowed to interact during either each laboratory run or while
passing from the first run to the second. We did not provide details on the
experimental hypotheses, and informed the participants that their grade on the
course would not be affected by their performance.

After the execution of each experiment or replication, the data collected were placed on an
excel sheet, following an answering diagram constructed before the experiment was carried
out. On this sheet, the answers to the understanding tasks were graded as correct or incorrect,
since they were multiple choice questions. With regard to the modifiability tasks, each task has
a maximum mark (see Table 5), depending on the correctness of the answer provided. This
means that for each task, a mark was given to the subject depending on the number of correct
lines of code added to the solution. Incorrect answers were not graded negatively, i.e., lines of
code which do not solve the tasks.

3.8 Analysis Procedure

The data analysis was carried out by considering the following steps:

1. Analysis of the main factor:

1.1 We first carried out a descriptive study of the measures of the dependent variables,
i.e., understandability and modifiability (see Section 5.1).

1.2 We then analyzed the characteristics of the data to determine which parametric or
non-parametric test would be most appropriate. We performed a Kolmogorov-
Smirnov test (Sheskin 2007) to determine the normality of distributions and a
Levene test (Sheskin 2007) to determine the homogeneity of variances.

1.3 Based on the results of the previous test, we then tested the null hypotheses
formulated using the non-parametric Wilcoxon test (Conover 1998) for the data
collected in the experiment (see Sections 5.2.1 to 5.2.4). The use of this test was
possible because, in accordance with the design of the controlled experiment, we
obtained paired samples.

1.4 To strengthen the results of each experiment, we decided to integrate them using a
meta-analysis (see Section 5.2.5). A meta-analysis is a set of statistical techniques
with which to combine the different effect sizes of the experiments in order to obtain
a global effect of a factor on a dependent variable.

2. Analysis of the cofactors:

2.1. System: The influence and the interaction of the System cofactor with the LoD (main
factor) is analyzed in Section 5.3. There could be several concerns as regards performing
this kind of analysis when adopting the within-participants counterbalanced design
(Kitchenham et al. 2002). We therefore used interaction plots (Devore and Farnum
1999) to study the interaction of LoD with the cofactors. Interaction plots are simple line
graphs on which the means of the dependent variables (in our case UEffec, UEffic,MEffec
andMEffic, one on each graph) for each level of a factor (in our case the cofactor System)

Empir Software Eng (2016) 21:212–259 231

are plotted over all the levels of another factor (in our case the LoD). The resulting lines
are parallel when there is no interaction and nonparallel when an interaction is present.
2.2. Order: The measurement differences of the dependent variables when participants
used high or low LoD were analyzed by using the method suggested by Briand et al.
(Briand et al. 2005). This analysis is called Order of method (one of the cofactors), and the
results are shown in Section 5.4. In particular, let:

– Diff (low) be the differences in the values for a dependent variable that the participants
achieved when performing the tasks using a low LoD first and a high LoD second,
and

– Diff (high) be the differences in the values for a dependent variable that the partici-
pants achieved when performing the tasks using a high LoD first and a low LoD
second.
In order to verify whether Diff (high) was statistically greater than Diff (low), we used

the non-parametric Mann–Whitney test (Conover 1998) for independent samples. In our
case, we expected that Diff (high) would be greater than Diff (low) for all the measures
UEffec, UEffic, MEffec and MEffic. The rationale was that the participants might obtain
higher scores when using a high LoD in the first run, and we therefore tested the null
hypothesis H0Order: Diff (low)=Diff (high). In the case of rejecting this hypothesis, we
verified whether Diff (high) was greater than Diff (low) for all the measures (i.e., Diff
(high)>Diff (low)).
2.3. Ability: The influence of the Ability cofactor was analyzed by performing non-
parametric tests owing to the nature of the data obtained (see Section 5.5).

3. The data collected from the post-experiment questionnaire with the participants’ subjec-
tive perceptions was eventually analyzed using descriptive statistics and illustrated with
column graphs (see Section 5.6).

In all the statistical tests performed, we decided (as is customary) to accept a 5 %
probability of committing a Type-I-Error (Wohlin et al. 1999) and used SPSS (SPSS 2003)
as a statistical package.

3.9 Documentation and Communication

Issues such as documentation (Juristo et al. 2013) and communication among experimenters
(Vegas et al. 2006) may influence the success or the failure of replications. These issues were
handled by using laboratory packages and knowledge sharing mechanisms. The material was
originally written in English, and was translated into Spanish and Italian for the corresponding
replications. The material included: the background questionnaire, the understanding/
modification questionnaires, the answer sheets, the source code and the UML diagrams (two
versions: high and low LoD) and the post-experiment questionnaire. The groups of experi-
menters also shared a document to provide a common background in order to communicate all
the terms related to the design and analysis of the experiment.

The experimenters began with an initial face-to-face meeting at which the principal ideas of
the experiments were discussed and reported in minutes. All the experimenters then exchanged
the minutes of the meeting by e-mail in order to agree to a shared common research plan. This
phase was relevant to sharing knowledge among the experimenters and to discussing possible
issues related to the study.

The experimenters used instant messaging tools and e-mails to establish a communication
channel in all the phases of the study. Teleconferences also took place in order to share

232 Empir Software Eng (2016) 21:212–259

knowledge among the research groups and to discuss the experimental procedure that the
participants had to follow.

4 Results

In this section, we present the data analysis following the procedure presented above: the
presentation of the descriptive statistics, the test of the hypotheses related to the main factor
(LoD), the analysis of the influence of cofactors and the analysis of the post-experiment
questionnaire.

4.1 Descriptive Statistics and Exploratory Analysis

Tables 7, 8, 9, and 10 show the respective descriptive statistics of the UEffec, UEffic, MEffec,
and MEffec measures (i.e., number of subjects (N), mean (), standard error (SE), and standard
deviation (SD)), grouped by LoD.

As will be observed in Tables 7, 8, 9 and 10 (first row of each table), in half of the cases in
E-UL (MEffec and MEffic), the subjects obtained, on average, better results when using low
LoD UML diagrams. Only in the case of UEffic are the results better with high LoD diagrams.
In the case of UEffec, there were no differences in the means. This group had the same
tendency as the subjects of R1-UCLM who, on average, obtained better results in all the
measures when using low LoD UML diagrams.

In the case of R2-UB1, the subjects obtained, on average, better results in both measures
related to understandability (UEffec and UEffic) when using high LoD UML diagrams and, on
the contrary, they obtained better results in both measures related to modifiability (MEffec and
MEffic) when using low LoD diagrams.

A mixture of results also appeared in the case of R3-UB2, in which the subjects obtained,
on average, better results when using low LoD UML diagrams in the UEffic and MEffec
measures. In the other two variables, UEffec andMEffic, the results were better with high LoD
diagrams.

These results show the following:

& UEffec: on average, the results show a tendency in favor of high LoD in two of the
experiments and another in favor of low LoD (in the other there are no differences in favor
of either low or high LoD).

& UEffic: The results are similar to those of the Ueffec, i.e., an average tendency in favor of
high LoD in two of the experiments and another two in favor of low LoD.

Table 7 Descriptive statistics for UEffec

Exp_ID Low LoD High LoD

N
X

SE SD N
X

SE SD

E-UL 11 0.76 0.047 0.16 11 0.76 0.065 0.22

R1-UCLM 16 0.58 0.057 0.23 16 0.56 0.050 0.20

R2-UB1 32 0.54 0.574 0.33 32 0.57 0.054 0.31

R3-UB2 22 0.38 0.063 0.29 22 0.50 0.611 0.29

Empir Software Eng (2016) 21:212–259 233

& MEffec: on average, the participants achieved slightly better results when employing low
LoD diagrams because better mean values for low LoD were achieved in all the experi-
ments. The difference in favor of low LoD is more evident for R2-UB1 and R3-UB2.

& MEffec: on average, the participants achieved slightly better results when employing low
LoD diagrams. Better mean values for low LoD were achieved in all the experiments, with
the exception of R3-UB2.

In summary, it can be observed that when the subjects used low LoD diagrams they
obtained better values in both of the measures related to modifiability (MEffec and MEffic).
This indicates that low LoD diagrams may, to some extent, improve the modification of the
source code. We cannot reach any conclusion related to the understandability because the
differences between both groups (high and low LoD groups) are less evident.

4.2 Influence of LoD

In order to test the formulated hypotheses (H1,0, H2,0, H3,0, H4,0) we analyzed the effect of the
main factor (i.e., LoD) on the measures of the dependent variables considered (i.e., UEffec,
UEffic, MEffec and MEffic) using the Wilcoxon test. We performed this test owing to the
characteristics of the data, i.e., in most cases the data were not normal and there was no
homogeneity of variances (conclusions extracted after a Kolmogorov-Smirnov test and a
Levene test, respectively).

The results for each measure of the Wilcoxon test are shown in the tables (Tables 11, 12, 13,
and 14) in the following subsections, in which the #obs column describes the number of
observations, the influence column refers to the existence of the influence of the LoD (the p-
value for the statistics test is between brackets). The statistical observed power and the size of
the effect are then shown. These tables also report the number of participants that achieved

Table 8 Descriptive statistics for UEffic

Exp_ID Low LoD High LoD

N
X

SE SD N
X

SE SD

E-UL 11 0.0030 0.00046 0.0016 11 0.0037 0.00054 0.0018

R1-UCLM 16 0.0025 0.00032 0.0013 16 0.0023 0.00028 0.0011

R2-UB1 32 0.0018 0.00030 0.0017 31 (1outlier) 0.0020 0.00032 0.0017

R3-UB2 22 0.0016 0.00041 0.0019 22 0.0016 0.00025 0.0012

Table 9 Descriptive statistics for MEffec

Exp_ID Low LoD High LoD

N
X

SE SD N
X

SE SD

E-UL 11 0.44 0.066 0.22 11 0.40 0.051 0.17

R1-UCLM 16 0.61 0.047 0.19 16 0.58 0.050 0.20

R2-UB1 31 0.47 0.050 0.28 31 0.43 0.049 0.27

R3-UB2 22 0.52 0.049 0.23 22 0.47 0.059 0.28

234 Empir Software Eng (2016) 21:212–259

better results using a low LoD (# of low>high) or a high LoD (# of low<high). The
number of participants that obtained the same results using a low or high LoD are
also shown (# of low=high).

4.2.1 Testing Understandability Effectiveness (H1,0)

The results in Table 11 suggest that the null hypothesis (H1,0) cannot be rejected when using
the Wilcoxon test since the p-value is greater than 0.05 in the first experiment and in all the
replications. This means that there is no significant difference in UEffec in either group (low or
high LoD diagram groups).

We decided to investigate this result in greater depth by calculating the number of subjects
who achieved better values when using low or high LoD models (i.e., a low LoD value is
higher than a high LoD value or vice versa, respectively). As Table 11 shows, the number of
subjects who obtained the same results for both treatments (high and low LoD) is relatively
high in E-UL and R1-UCLM. There were more subjects who performed better with a high
LoD than with a low LoD (with the exception of R1-UCLM), but the differences in compar-
ison to the opposite group are very small in the case of E-UL (only one subject). The results
suggest that there was no statistical significant difference in the UEffec when the participants
employed low or high LoD models. Nonetheless, the statistical powers are very low, probably
because of a small effect size, so we would be assuming a 0.729 to 0.949 (i.e., 1 – statistical
power) estimated probability of a Type II error in our assertions. Given the low value of the
observed power we cannot obtain strong conclusions.

4.2.2 Testing Understandability Efficiency (H2,0)

As is shown in Table 12, the p-value is greater than 0.05 in all the cases, so the null hypothesis
(H2,0) cannot be rejected. This means that there is no significant difference in the UEffic in
either group (low or high LoD group).

Table 10 Descriptive statistics for MEffic

Exp_ID Low LoD High LoD

N
X

SE SD N
X

SE SD

E-UL 11 0.0049 0.00052 0.0017 11 0.0045 0.00077 0.0025

R1-UCLM 16 0.0056 0.00052 0.0021 16 0.0051 0.00047 0.0019

R2-UB1 30 0.0039 0.00055 0.0030 30 0.0038 0.00054 0.0030

R3-UB2 22 0.0033 0.00038 0.0018 22 0.0037 0.00050 0.0024

Table 11 Wilcoxon tests results for UEffec

Dep.
variable

#obs Influence
(low≠high)

Statistical
power

Effect size # of low>high # of low=high # of low<high

E-UL 22 No (0.680) 0.051 0.001 2/11 (18 %) 6/11 (55 %) 3/11 (27 %)

R1-UCLM 32 No (0.500) 0.058 0.003 5/16 (31 %) 7/16 (44 %) 4/16 (25 %)

R2-UB1 64 No (0.661) 0.076 0.003 9/32 (28 %) 11/32 (34 %) 12/32 (38 %)

R3-UB2 44 No (0.130) 0.271 0.043 6/22 (27 %) 5/22 (23 %) 11/22 (50 %)

Empir Software Eng (2016) 21:212–259 235

As in the analysis of Understandability Effectiveness, a more in-depth analysis of this
measure was carried out by calculating the number of subjects who achieved better values
when using the low or high LoD diagrams (i.e., a low LoD value is higher than a high LoD
value or vice versa, respectively). As Table 12 shows, there were isolated cases (one or no
cases in each experiment) with subjects who obtained the same UEffic for both treatments
(high and low LoD). More subjects performed better with a low LoD than with a high LoD in
E-UL and R1-UCLM but the differences are very slight (1 subject and 3 subjects, respective-
ly). In the case of R2-UB1 and R3-UB2, the results shows a slight tendency toward obtaining
better results with a high LoD than with a low LoD (with a difference of 7 subjects in the case
of R2-UB1).

The results suggest that there was no statistically significant difference in the UEffic when
the participants employed low or high LoD models. Bearing in mind that the statistical powers
are very low, there is an 82–94.8 % probability of wrongly assuming the equal influence of
high and low level of detail.

4.2.3 Testing Modifiability Effectiveness (H3,0)

We tested the formulated hypothesis (H3,0) using a Wilcoxon test. Its results, which are shown
in Table 13, reflect that the p-value is greater than 0.05 in the experiment and its replications,
thus forcing us not to reject the hypothesis. This means that there is no significant difference in
the MEffec in either group (low or high LoD diagram groups).

In the case of the MEffec, owing to the lack of significant results, we again calculated the
number of subjects who performed better with low LoD diagrams than with high LoD
diagrams and vice versa. The majority of subjects obtained better results with low LoD
diagrams, with the exception of R3-UB2 in which the number of subjects who performed
better with low LoD was the same as the subjects who performed better with high LoD. In the
case of theMEffic, we can see a clear tendency toward obtaining better results with a low LoD,

Table 12 Wilcoxon tests results for UEffic

Dep. Variable #obs Influence
(low≠high)

Statistical
power

Effect size # of low>high # of low=high # of low<high

E-UL 22 No (0.594) 0.180 0.056 6/11 (55 %) 0/11 (0 %) 5/11 (45 %)

R1-UCLM 32 No (0.776) 0.077 0.008 9/16 (56 %) 1/16 (6 %) 6/16 (38 %)

R2-UB1 64 No (0.104) 0.081 0.005 12/32 (38 %) 1/32 (3 %) 19/32 (59 %)

R3-UB2 44 No (0.639) 0.052 0.0003 9/22 (41 %) 1/22 (5 %) 12/22 (54 %)

Table 13 Wilcoxon tests results for MEffec

Dep. variable #obs Influence
(low≠high)

Statistical
power

Effect size # of low>high # of low=high # of low<high

E-UL 22 No (0.505) 0.069 0.009 6/11 (55 %) 1/11 (9 %) 4/11 (36 %)

R1-UCLM 32 No (0.535) 0.178 0.006 11/16 (65 %) 0/16 (0 %) 5/16 (35 %)

R2-UB1 58 No (0.309) 0.088 0.006 16/29 (55 %) 0/29 (0 %) 13/29 (45 %)

R3-UB2 44 No (0.346) 0.074 0.004 11/22 (50 %) 0/22 (0 %) 11/22 (50 %)

236 Empir Software Eng (2016) 21:212–259

which is the opposite of what we had expected. The results suggest that there was no statistical
significant difference in the MEffec when the participants employed low or high LoD models.
Again, it is important to note the high probabilities of assuming a lack of influence of the level
of detail owing to the low statistical powers.

4.2.4 Testing Modifiability Efficiency (H4,0)

Finally, we tested the last null hypothesis formulated (H4,0). The results, which are shown in
Table 14, suggest that the null hypothesis cannot be rejected because the p-value is greater than
0.05 in the experiment and its replications. This means that, again, there is no significant
difference in the MEffic in either group (low or high LoD diagram groups). As in the case of
the other three metrics, the statistical powers for the MEffic are very low, and this indicates a
possible high Type II error.

As Table 14 shows, no subjects obtained the sameMEffic for both treatments (high and low
LoD). There were two cases (E-UL and R2-UB1) in which more subjects performed better
with a high LoD than with a low LoD, but the differences in comparison to the opposite group
are very small (1 subject). In the other two cases (R1-UCLM and R3-UB2), the subjects
performed better with a low LoD.

4.2.5 Integrating the Obtained Results Through Meta-Analysis

Since there are no significant results in the tests as regards the influence of the LoD,
and the effect sizes are small, we therefore decided to integrate the results of the
different studies using a meta-analysis. A meta-analysis is a set of statistical tech-
niques with which to integrate the results of various studies in order to obtain a
global effect of a factor on a dependent variable. In our case the factor is the LoD of
UML diagrams, and we wish to know how this affects the understandability and
modifiability of source code. This technique has been used for the same purpose in
other families of experiments, such as those shown in (Hannay et al. 2009; Cruz-
Lemus et al. 2010; Scanniello et al. 2013).

As measures may originate from different environments and may not be homogeneous, it is
necessary to obtain a standardized measure of each one, and the measures used to estimate the
global size effect of the factor must then be combined. For each dependent variable, we
computed the mean value obtained by the participants when using a low LoD, minus the mean
value they obtained with a high LoD. We used these values to compute the Hedges’ g metric
(Hedges and Olkin 1985; Kampenes et al. 2007), which was used as a standardized measure.
The overall conclusion was obtained by calculating the Z score based on the mean and
standard deviation of the Hedges’ g statistics of the experiments. The global effect size was

Table 14 Wilcoxon tests results for MEffic

Dep.
variable

#obs Influence
(low≠high)

Statistical
power

Effect size # of low>high # of low=high # of low<high

E-UL 22 No (0.477) 0.070 0.010 5/11 (45 %) 0/11 (0 %) 6/11 (55 %)

R1-UCLM 32 No (0.379) 0.117 0.020 9/16 (38 %) 0/16 (0 %) 7/16 (62 %)

R2-UB1 62 No (0.922) 0.092 0.006 15/31 (49 %) 0/31 (9 %) 16/31 (51 %)

R3-UB2 44 No (0.848) 0.103 0.011 12/22 (54 %) 1/22 (5 %) 9/22 (41 %)

Empir Software Eng (2016) 21:212–259 237

therefore obtained by using the Hedges’ g metric, in which the weights are proportional to the
size of the experiment:

Z ¼
X

i
wizi

X
i
wi

where wi =1/(ni-3) and ni is the sample size of the i-th experiment. The higher the value of
Hedges’ g, the higher the corresponding mean difference. An effect size of 0.5 indicates that
the mean value obtained when using low LoD diagrams is half a standard deviation greater
than the mean when not using them.

As suggested in (Kampenes et al. 2007), the effect size can be classified as: small (S) for
values between 0 and 0.37, medium (M) for values between 0.38 and 1.0, and large (L) for
values above 1.00.

The meta-analysis was performed by using the Comprehensive Meta-Analysis v2
tool (Biostat 2006). For each measure the tool produced the forest plots depicted in
Figs. 4, 5, 6 and 7. The squares and diamonds are mostly proportional in size to each
study’s weight under the fixed effect model (see the ‘Relative weight’ column). The
squares show the individual effect size of each experiment and the diamond shows the
global effect size. The values of the Hedges’ g metric are also reported. Positive
values indicate that the use of low LoD diagrams improves the comprehensibility and
modifiability of source code. Negative values mean that a high LoD is the improving
treatment.

If we focus on the results obtained for the UEffec variable (see Fig. 4), the total effect is in
favor of using high LoD diagrams, but the global effect size obtained is not statistically
significant since the p-value is not greater than 0.05. The results are similar in the case of
UEffic (see Fig. 5). The values obtained for the Hedge’s g metric (0.123 for UEffec and 0.070
for UEffic) indicate a small size for the global effect.

If we focus on the results obtained for the MEffec variable (see Fig. 6), the total effect is in
favor of using low LoD diagrams, but the global effect size obtained is not statistically significant
since the p-value is not greater than 0.05. The results are similar in the case ofMEffic (see Fig. 7).
The values obtained for the Hedge’s g metric (−0.162 forMEffec and −0.082 forMEffic) indicate
a small size for the global effect.

Fig. 4 Meta-analysis of UEffec

238 Empir Software Eng (2016) 21:212–259

We can see a slight tendency toward understanding tasks in favor of high LoD diagrams
while low LoD diagrams are better for modification tasks. Despite this tendency, the global
effect size it is not statistically significant in any of the cases.

4.3 Influence of System

An analysis of the interaction plots shown in Figs. 8, 9, 10 and 11 shows that interaction is not
present when the lines of the diagram are more or less parallel, which occurs in some cases and
is the ideal situation.

In the case of E-UL (first plot of each figure), if we focus on those diagrams that have
crossed lines we can separate them into two groups. The first is related to the understandability
(concretely, the UEffec diagram), and in this case the participants appear to achieve better
results when using System B with a low LoD and System A with a high LoD. These results
allow us to suggest that System A has sufficient information in the low LoD version to
understand the system, and when more information is introduced it appears to become more
complex from the point of view of understanding. The second is related to modifiability
(concretely, the MEffec and MEffic diagrams). The opposite of the understandability group

Fig. 6 Meta-analysis of MEffec

Fig. 5 Meta-analysis of UEffic

Empir Software Eng (2016) 21:212–259 239

occurs when using System B, and the participants appear to obtain better results when using
high LoD diagrams. The result seems to get worse if we add details to the diagrams when
using System A. These results allow us to suggest that System B may be more complex than
System A.

In the case of the results of R1-UCLM (second plot of each figure), there is less system
interaction because the lines of the diagram are more or less parallel, and this is the ideal
situation. Only in the case of MEffic do the subjects appear to perform better when adding
details to System B.

The analysis of the interaction plots of R2-UB1 (third plot of each figure) shows similar
results in the case of the understandablity to those obtained in E-UL (the participants seem to
achieve better results when using System B with a low LoD and System Awith a high LoD).
But in the case of the modifiability, the results are the opposite of those obtained in E-UL (the
participants seem to obtain better results when they are using high LoD diagrams).

In the last replication, i.e., R3-UB2 (fourth plot of each figure), there is not so much system
interaction because in almost all cases the lines of the diagram are more or less parallel, and
this is the ideal situation. Only in the case of MEffic do the subjects seem to perform better
when adding details to System B. This pattern was also discovered in the results of R1-UCLM.

Upon focusing on measurements, the plots can be separated in two groups. The
first is related to the understandability (Figs. 8 and 9), and in these cases the
participants seems to achieve better results when using System B. The second is
related to the modifiability (Figs. 10 and 11), and in these cases the participants
seems to achieve better results when using System A.

Fig. 8 Interaction between LoD and System for UEffec

Fig. 7 Meta-analysis of MEffic

240 Empir Software Eng (2016) 21:212–259

These results allow us to suggest that the low LoD version of System A contains sufficient
information to understand the system, and when more information is introduced it seems to
become more complex from the point of view of the understandability. The opposite occurs
when using System B. But if we focus on modifiability tasks, the participants appear to obtain
better results when using high LoD diagrams and this result seems to get worse as details are
added to the diagrams. The opposite occurs when using System A. These results allow us to
suggest that System B seems to be more complex than System A.

4.4 Influence of Order

In this subsection we analyze the hypothesis related to the order in which the material was
presented to the subjects, in which the ideal result is to accept the null hypothesis:

H0: The order in which the material was presented to the subjects has no influence as
regards the measure. H1: ¬H0.

These hypotheses were tested by performing a Mann–Whitney test (see Table 15).
The results of the test revealed that the null hypothesis could not be rejected for all

the experiments in the case of UEffec. This result means that the participants in the
second run did not obtain significantly greater or smaller differences when using a
low or high LoD in UEffec.

In the case of UEffic, The results of the Mann–Whitney test revealed that H0 could not be
rejected for E-UL, R2-UB1, and R3-UB2, i.e., the second run of these experiments did not
obtain significantly greater differences in UEffic. With regard to R1-UCLM, the test revealed
that the null hypothesis could be rejected: the participants in the second runs obtained
significantly smaller differences in UEffec.

Fig. 9 Interaction between LoD and System for UEffic

Fig. 10 Interaction between LoD and System for MEffec

Empir Software Eng (2016) 21:212–259 241

If we focus on the measures related to modifiability, MEffec and MEffic, the results of the
Mann–Whitney test revealed that H0 could not be rejected for E-UL, R1-UCLM, and R3-UB2,
i.e., the second run of these experiments did not obtain significantly greater differences in
MEffec or MEffic. With regard to R2-UB1, the test revealed that the null hypothesis could be
rejected since the participants in the second runs obtained significantly smaller differences in
MEffec or MEffic.

4.5 Influence of Ability

In this subsection we analyze the hypothesis related to the subject’s ability, in which the ideal
result is to accept the null hypothesis:

H0: The subjects’ abilities have no influence on the measure. H1: ¬H0.

These hypotheses were tested by performing Mann–Whitney tests (see Table 16).
If we focus on the results of the test performed for E-UL, they signify that the null

hypothesis could not be rejected for half of the variables, and the subjects’ abilities thus
influence the results of the experiment for half of the measures. This was the case ofUEffic and
MEffic, with which the test revealed that the null hypothesis could be rejected because the
participants with higher abilities understood the system faster and performed better modifica-
tions. In the case of the other two measures (UEffec and MEffic) ability had no influence on
their results.

In the remaining cases (R1-UCLM, R2-UB1 and R3-UB2), the results of the test indicate
that the null hypothesis could not be rejected for any of the variables. The subjects’ abilities did
not therefore influence the results of the experiment as we had expected.

4.6 Post- Experiment Questionnaire Results

With regard to the analysis of the post-questionnaire, it is important to bear in mind that the
subjects responded to 2 post-questionnaires each (one after each run). The absolute numbers in

Fig. 11 Interaction between LoD and System for MEffic

Table 15 U-Mann Whitney tests results for the influence of order

Order UEffec UEffic MEffec MEffic

E-UL 1 0.105 0.223 0.341

R1-UCLM 0.166 0.044 0.691 0.258

R2-UB1 0.227 0.478 0.016 0.039

R3-UB2 0.98 0.216 0.188 0.46

242 Empir Software Eng (2016) 21:212–259

this section might therefore be higher than the total number of subjects. In order to avoid
confusion, we shall refer to the number of “cases” rather than the number of “subjects” when
providing these kinds of numbers.

The analysis of the answers to the post-experiment questionnaire revealed that the time
needed to carry out the comprehension and modification tasks was considered to be inappro-
priate (more time was needed), and that the subjects considered the tasks to be quite difficult
(Fig. 12), independently of the treatment received. The need for more time to perform the tasks
and the consideration of the task as difficult may have arisen from the fact that the measure-
ment of the time needed was derived from the pilot study, which was performed by PhD
students, who probably had a higher ability and/or more experience than these Master’s
students, signifying that the less experienced subjects needed more time.

We also asked them if they had had any problems when reading the diagrams made
available to them. In this case, if a subject responded “completely agree” or “agree”, this
indicates that s/he did not have any problems when reading the diagrams, while a response of
“disagree” or “completely disagree” indicates that they did, and “neither” is a neutral response.
As Fig. 13 shows, most of the subjects did not have any problems when reading the diagrams
(90 vs. 38) and more particularly, the low LoD diagrams caused less problems than the high
LoD diagrams (17 vs. 21). This can be explained because the structural complexity of a
software diagram affects its cognitive complexity (Cant et al. 1995). Cognitive complexity
refers to the mental burden that people (e.g. analysts, designers, developers, testers, main-
tainers, etc.) experience when building, validating, verifying or using diagrams. According to
Systems Theory, the complexity of a system is based on the number of different types of
elements and on the number of different types of (dynamically changing) relationships

Table 16 U-Mann Whitney tests for the influence of ability

Ability UEffec UEffic MEffec MEffic

E-UL 0.632 0.031 0.007 0.092

R1-UCLM 0.084 0.876 0.183 0.139

R2-UB1 0.161 0.085 0.899 0.829

R3-UB2 0.673 0.888 0.279 0.197

Fig. 12 Subjects’ perception of the experiment

Empir Software Eng (2016) 21:212–259 243

between them (Pippenger 1978). The structural complexity of a software diagram is thus
determined by the elements of which it is composed, signifying that a low LoD diagram has a
lower structural complexity than a high LoD diagram, and that its cognitive complexity is
therefore also lower.

Moreover, some subjects (11) had difficulties when reading the source code (Fig. 14), more
or less in the same proportion for the low and high LoD group in the case of E-UL. A majority
of subjects also had difficulties when reading the source code (25 vs. 20) in the case of R2-
UB1, and most of them were subjects from the high LoD diagrams group (14 vs. 11). In the
rest of the replications, the majority of the subjects did not have any difficulties when reading
the source code. A major proportion of subjects from the low LoD diagrams group in the case
of R1-UCLM, and subjects from the high LoD diagrams group in the case of R3-UB2 had
difficulties when reading the diagrams.

Finally, we also asked about the subjects’ perceptions of some of the items that appeared in
the high LoD diagrams but did not appear in the low LoD diagrams. Figure 15 shows that high
LoD elements seem to be appreciated by the subjects. With regard to the histograms in Fig. 15,
if a subject responds “completely agree” or “agree”, this indicates that s/he thinks that the
element in the question was helpful, while a response of “disagree” or “completely disagree”
indicates that the elements in the question are not helpful (“neither” is a neutral response).

If we focus on the elements related to class diagrams (upper histograms) we can see that
attributes are helpful in 100 cases (versus 9 cases in which the subjects do not believe them to
be helpful). The same is true for the operations (102 cases vs. 4 cases). If we focus on the
elements related to sequence diagrams (lower histograms) we can see that formal messages are
more helpful (107) than natural language messages (2), and the same can also be said for the
appearance of parameters in messages (102 vs. 5). In all these cases the graphs show that the
subjects who received the high LoD diagrams agree more with the helpfulness of those
elements.

Fig. 13 Subjects’ difficulties when reading diagrams

244 Empir Software Eng (2016) 21:212–259

5 Summary and Discussion of the Data Analysis

The main findings of the family of experiments presented in this paper, which are also
illustrated in Table 17, are summarized below. We shall also discuss and attempt to find an
explanation for the results obtained.

The first experiment (E-UL) was performed with 11 students from the University of Leiden
(The Netherlands). In this experiment we did not obtain conclusive results in favor of any of
the treatments (low or high LoD). In general, the cofactors did not influence the results of the
experiment. But the subjects’ Ability did influence some results (UEffic and MEffec), and the
System seemed to slightly influence the results of the measures (UEffec, UEffic, MEffec and
MEffic). The descriptive statistics showed a tendency in favor of using low LoD, contrary to
our expectations since we believed that more details in a diagram would help maintainers to
perform their daily tasks. Indeed, in the results of the post-experiment questionnaire the

Fig. 14 Subjects’ difficulties when reading source code

Empir Software Eng (2016) 21:212–259 245

subjects with high LoD diagrams had problems when reading the diagrams. We then attempted
to replicate the experiment in order to corroborate the tendency of this preliminary conclusion.

The first replication (R1-UCLM) was performed by a different group of students, concrete-
ly 16 students from the University of Castilla-La Mancha (Spain). We attempted to solve the
influence of the system detected in the previous experiment by clarifying the statements of the
assignments, since the E-UL subjects’ answers seemed to follow an incorrect pattern which
might have been caused by the statements rather than by the system itself. In this case, the
influence of this cofactor was almost nil, i.e., we cancelled the influence of the system as we
expected, and Order influenced only one of our four measures (UEffic). Following the results
obtained in the first experiment, the descriptive statistics of the first replication were in favor of
a low LoD, but again we did not obtain conclusive results after performing the statistical test.
However, contrary to the results of the E-UL, the responses to the post-experiment question-
naire of R1-UCLM show that the subjects had more problems when reading the low LoD
diagrams, and we therefore decided to perform two more replications.

In these last two replications (R2-UB1 and R3-UB2) we attempted to solve the problem of
obtaining inconclusive results by increasing the number of subjects involved in the experi-
ment, since this might help us to detect patterns in the responses and perform a more powerful
statistical test. In this case, 32 and 22 students, respectively, from the University of Bari (Italy)
were involved as subjects. In the second replication (R2-UB1) there were clear influences of

Fig. 15 Subjects’ opinion of LoD

246 Empir Software Eng (2016) 21:212–259

T
ab

le
17

Su
m
m
ar
y
of

re
su
lts

of
th
e
fa
m
ily

of
ex
pe
ri
m
en
ts

E
xp
_I
D

D
es
cr
ip
tiv

e
st
at
is
tic
s
(i
n
fa
vo
ur

of
…
)

In
fl
ue
nc
e
of

L
oD

In
fl
ue
nc
e
of

Sy
st
em

In
fl
ue
nc
e
of

O
rd
er

U
E
ffe
c

U
E
ffi
c

M
E
ffe
c

M
E
ffi
c

U
E
ffe
c

U
E
ffi
c

M
E
ffe
c

M
E
ffi
c

U
E
ffe
c

U
E
ffi
c

M
E
ffe
c

M
E
ffi
c

U
E
ffe
c

U
E
ffi
c

M
E
ffe
c

M
E
ffi
c

E
-U

L
-

H
L

L
✗

✗
✗

✗
✗

✗
✓

✓
✗

✗
✗

✗

R
1-
U
C
L
M

L
L

L
L

✗
✗

✗
✗

✗
✗

✗
✗

✗
✓

✗
✗

R
2-
U
B
1

H
H

L
L

✗
✗

✗
✗

✓
✓

✓
✓

✗
✗

✓
✓

R
3-
U
B
2

H
L

L
H

✗
✗

✗
✗

✓
✗

✗
✓

✗
✗

✗
✗

D
es
cr
ip
tiv
e
st
at
is
tic
s:
“L

”=
be
tte
r
re
su
lts

w
he
n
us
in
g
L
O
W
ra
th
er
th
an

hi
gh

L
oD

“M
”=

be
tte
r
re
su
lts

w
he
n
us
in
g
H
IG

H
ra
th
er
th
an

lo
w
L
oD

“-
”=

no
di
ff
er
en
ce
s
w
he
n
us
in
g
lo
w
or

hi
gh

L
oD

In
fl
ue
nc
e
of

L
oD

✗
=
hy
po
th
es
is
no
t
re
je
ct
ed
→

T
he
re

is
no

si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
w
or
ki
ng

w
ith

U
M
L
di
ag
ra
m
s
m
od
el
ed

us
in
g
hi
gh

or
lo
w

L
oD

✓
=
hy
po
th
es
is
re
je
ct
ed
→

T
he
re

is
a
si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
w
or
ki
ng

w
ith

U
M
L
di
ag
ra
m
s
m
od
el
ed

us
in
g
hi
gh

or
lo
w

L
oD

(e
xp
ec
te
d
va
lu
e)

In
fl
ue
nc
e
of

Sy
st
em

✗
=
hy
po
th
es
is
no
t
re
je
ct
ed
→

T
he
re

is
no

si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
w
or
ki
ng

w
ith

sy
st
em

A
or

B
(e
xp
ec
te
d
va
lu
e)

✓
=
hy
po
th
es
is
re
je
ct
ed
→

T
he
re

is
a
si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
w
or
ki
ng

w
ith

sy
st
em

A
or

B

In
fl
ue
nc
e
of

O
rd
er

✗
=
hy
po
th
es
is
no
t
re
je
ct
ed
→

T
he
re

is
no

si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
re
ce
iv
in
g
sy
st
em

A
fi
rs
t
an
d
sy
st
em

B
se
co
nd
,o

r
vi
ce

ve
rs
a
(e
xp
ec
te
d
va
lu
e)

✓
=
hy
po
th
es
is
re
je
ct
ed
→

T
he
re

is
a
si
gn
if
ic
an
t
di
ff
er
en
ce

in
th
e
re
su
lts

w
he
n
re
ce
iv
in
g
sy
st
em

A
fi
rs
t
an
d
sy
st
em

B
se
co
nd
,o

r
vi
ce

ve
rs
a

Empir Software Eng (2016) 21:212–259 247

the system and order, which might have been caused by learning effects or indirect effects.
Attempts were made to fix these possible misunderstandings in the third replication (R3-UB2),
and the cofactors did not have any influence on the results. Again, the statistical test did not
provide conclusive results about the influence of the different LoDs on the understanding and
modifiability of a system. Surprising, and contrary to the results of the first experiment and the
first replication, the descriptive statistics of these two replications were in favor of a high LoD.
Contrary to these results, the subjects had more difficulties when reading the high LoD
diagrams compared to the low LoD diagrams.

After the individual analysis, a meta-analysis was performed in order to integrate the
results. Its results show a tendency in favor of high LoD diagrams for both measures related
to the understandability of the system (UEffec and UEffic) and in favor of low LoD diagrams
for both measures related to the modifiability of source code (MEffec andMEffic). But in both
cases, the results are not clearly evident owing to the values of the p-values (always lower than
0.05). These results are aligned with those obtained in the descriptive statistics.

Although the results do not seem to be in favor of a specific LoD in each experiment or
replication, we noticed that in the majority of the cases, the descriptive statistics were in favor
of using high LoD diagrams to understand the system, and a low LoD to maintain it.

Indeed, we performed replications of the experiment to explain or corroborate the results
obtained, but we were quite frustrated by the fact that results seemed to be incoherent and
random, without a clear tendency. With the goal of finding and explanation for the results
obtained we decided to obtain feedback from the students who had performed the experiments,
and we also wished to know the point of view of practitioners.

One year after the execution of the experiments, the majority of the students who had been
involved in their realization took another course with the same professors. Occasionally,
during lessons, the students asked their professors about the results obtained from them in
the experiment, what hypothesis had been tested, etc.

In order to try to explain the results of the experiment, and in order to teach the students
about designing and analyzing experiments, a focus-group-session explaining these concepts
was planned at each location. The professors explained the details of the design of the
experiment to their students (which could not been explained before in order to not influence
their performance), along with the results. The results obtained (no convincing effect) were
also presented to the students. They attempted to provide some feedback about the possible
reasons, and in all locations they agreed that, in some cases, they had not used the diagrams,
and this is therefore a clear factor that influenced the lack of results. They argued that they had
not used the UML because the systems came from a well-known domain, and because the
tasks were not very complex - even though it was challenging to complete them in the time
available. It could be a risk to base our explanations on a focus group that came into existence
1 year after the execution of the experiment because the subjects might have forgotten the main
details, but the majority of the students agreed on their responses, and we therefore considered
them to be valid. It is also important to highlight that some of the students involved in the
experiments during that year occasionally asked their professors about the results of the
experiment, so they were obviously interested in the topic and were therefore less prone to
forget it.

Another interesting opportunity for discussing and attempting to understand the results
obtained was at a meeting with some practitioners from SER & Practices (a small Italian
company focused on software development and software engineering research). In SER &
Practices a weekly team meeting is held between the Director of the company (Danilo
Caivano, one of the authors) and the three area managers (Innovation, Production and
Services, Infrastructure). At the end of the meeting the Director asked the managers for help

248 Empir Software Eng (2016) 21:212–259

in interpreting the results obtained as part of a second focus group. To fully understand the
manager’s point of view it is opportune to point out that they use a SCRUM based process for
software systems development and maintenance.

A summary of the main findings of a long discussion and brainstorming session is shown
below:

& The systems were too small to effectively require the use of UML diagrams or other types
of technical documentation.

& The application domains of the two systems are too simple and well known to require the
use of very detailed diagrams for system understanding, especially for students because
these systems are usually used in textbooks or for didactical purposes.

& The maintenance request was simple and well-focused and did not therefore imply a time
consuming impact analysis or the need to study the analysis or design diagrams.

& Under the conditions described above, the source code is the best documentation
and the greater the level of detail in the diagram, the more difficult it is to
understand. This might be caused by the fact that the time spent studying
diagrams may be greater than that required to understand the system (or that
part of the system was directly impacted by the maintenance request) directly
through code.

Furthermore, the managers explained the way in which they use the diagrams, according to
certain rules. These rules helped us to corroborate our findings, and are the following:

& When the systems maintained are large and/or technically complex (i.e., they are the result
of the integration of several components developed by using different programming
languages or development frameworks, etc.) they usually use the high level design
diagrams/documentation in order to roughly understand the system architecture and thus
which components/subsystem they have to understand and modify. They then attempt to
understand the selected components directly from source code with the help of the
diagrams if necessary.

& When the systems maintained are complex and difficult to understand (they gave the
example of real time or embedded systems in which there are typically several functions/
methods/class that are not traceable to end user functions) they prefer to use diagrams with
a higher level of detail or the analysis diagrams/documentation in order to understand the
system behavior. This signifies that, depending on the technical complexity/size of the
system, the subjects did or did not use the design diagrams.

Finally we obtained a conclusion that we would not have been able to extract from the
results of the experiment and which was obtained from occasional feedback from the 2 focus
groups (students and practitioners): during the experiment it is possible that not all the subjects
used the UML diagrams provided. We did not obtain the same observations from the subjects
because they did not use the UML diagrams in the same way, and we were consequently
unable to evaluate the LoD effects. The lack of use of the UML diagrams might have been for
several reasons:

& Size of system and knowledge of the domain: The systems used were small systems and
they came from well-known domains. In this case, the subjects did not need to understand
the system because they already more or less knew what it was like. They only needed to
navigate the source code to discover how it was implemented.

Empir Software Eng (2016) 21:212–259 249

& Time constraints: We attempted to design a realistic experiment using actual systems. But
the time for the experiment was very limited owing to the subjects’ availability, so the tasks
needed to be sufficiently simple to be carried out during the time of the experiment. The
low complexity of the tasks might have meant that the subjects did not need a detailed
understanding of the systems.

It might appear that the experiment was incorrectly designed. Nevertheless, we performed a
pilot study to test both the material and the behavior of possible subjects, the results of which
were satisfactory and helped us to improve the design of the experiment. However, the people
who performed the pilot study were skilled PhD students who had more experience and
abilities as regards maintaining a system by following a methodological process, particularly a
model-based process.

The fact that the subjects did not use the UML diagrams provided might reflect the current
situation of industrial maintainers: documentation is not taken into account when under
pressure and when there is a time constraint. What is more, when the domain is well-known,
or the maintainers are already familiarized with it, they minimize the time taken to read the
UML diagrams and they may work directly on the source code. These results agree with those
obtained in (Scanniello et al. 2013).

6 Implications of the Study

One of the main implications of the results obtained in this family of experiments is that
practitioners do not need to pay so much attention to the LoD of the diagrams used during
maintenance tasks when the system under maintenance comes from a well-known domain.
This can only be generalized in the context of maintenance projects for Java systems
performed by novice software maintainers. From the researcher perspective, the results of this
family of experiments could help them to design other experiments, or complete families,
taking into account the problems dealt with, such as how to deal with randomized result
without a clear tendency and how to obtain an explanation for them.

We adopted a perspective-based approach (Nugroho and Chaudron 2008) to judge the
implications of our family of experiments. In particular, we based our discussion on the
practitioner/consultant (simply practitioner in the following) and researcher perspectives. To
this end, we took advantage of the checklists proposed in (Anda et al. 2006) in order to plan
and report this family of experiments. The main findings of our study and their research and
practical implications are summarized as follows:

& The use of low LoD diagrams is better in comparison to that of high LoD diagrams. This
statement is also supported by Briand et al.’s framework (Briand et al. 2001), which hypoth-
esizes that high cognitive complexity (i.e., high LoD diagrams) will result in reduced under-
standability which impedes the analyzability, adaptability and flexibility of the diagram. This
hypothesized relationship between structural complexity and external quality properties like
understandability and modifiability has been repeatedly demonstrated (Siau 1999; Poels and
Dedene 2000). This result is relevant from both the practitioner and the researcher perspectives.
From the practitioner perspective, this result is relevant because it is useless to provide
maintainers with additional information, coinciding with the results found in (Gravino et al.
2010). From the researcher perspective, it would be interesting to investigate whether variations
in the context lead to different results and why these diagrams are not as useful as expected.
With regard to these points, our work provides interesting insights resulting from an empirical

250 Empir Software Eng (2016) 21:212–259

investigation based on 81 participants. Although thismight not perhaps be surprising, this study
provides the bases for future investigations that may be better focused on how the UML
supports software engineers in the maintenance phase.

& The use of UML diagrams does not increase the performance of maintenance operations in
small systems when developers are familiar with the domain, and they might distract the
participants while performing comprehension and modification tasks. This result is rele-
vant for the researcher because it would be interesting to investigate why participants’
comprehension of source code (independently of their experience) does not improve
comprehension when it is supplemented with UML diagrams (low or high LoD). A
plausible justification for this result is that the traceability of the UML diagrams and the
source code is reduced each time that the source code is updated without synchronization
with the diagrams: the names of the entity may be different in the diagrams and source
code, or the relationships between the diagrams and the source code may be changed and
become more intricate in the source code than in the diagrams.

& The participants’ familiarity with the problem domain of a software system might affect the
comprehensibility and the modifiability of the source code, both when using and not using
UML analysis models. This result could be of interest to both the researcher and the practitioner.

& When performing maintenance tasks, the source of information that the participants found
more useful was the code. The participants thus perceived that UMLdiagrams could not benefit
the execution of the tasks assigned. This result is relevant for the researcher since it might be
interesting to investigate the motivation that guides a software engineer as regards trusting a
source of information and how s/he exploits it to accomplish a maintenance task.

& The UML diagrams selected in the two software systems were realistic for small-sized and
well-known projects. Although we are not sure that the results achieved scale to real
projects, they may be of interest to practitioners working on cases in which the documen-
tation is incomplete (e.g., in lean development processes) and the maintenance operation is
executed on a subset of the source code of the entire system.

& The UML is widely used in the software industry (Cohen et al. 2004; Dobing and Parsons
2006). The results obtained are therefore useful for all those companies that exploit this notation
as support for software maintainers/developers when executing maintenance operations.

& From a methodological perspective there are the following lessons: Firstly, this study
benefitted greatly from introducing the post-experiment questionnaire in the replications of
the experiment. This questionnaire was targeted toward clarifying some of the questions
that arose after performing the first experiment. Secondly, the study showed that the
subjects and conditions of a study trial should be very carefully chosen. In our case, the
Ph. D. students’ behavior in the trial was clearly different from that of the M.Sc. students in
the actual experiment.

7 Threats to Validity

It is necessary to consider certain issues that may have threatened the validity of the
experiment:

& External validity: External validity may be threatened when experiments are performed
with students, and the representativeness of the subjects in comparison to software profes-
sionals may be doubtful. In spite of this, the tasks to be performed did not require high levels
of industrial experience, so we believed that this experiment could be considered appropriate,

Empir Software Eng (2016) 21:212–259 251

as suggested in literature (Basili et al. 1999; Höst et al. 2000; Bruegge and Dutoit 2010;
Carver 2010).Working with students also implies a set of advantages, such as the fact that the
students’ prior knowledge is fairly homogeneous, there is the possible availability of a large
number of participants (Verelst 2004) and there is the chance to test experimental design and
initial hypotheses (Sjøberg et al. 2005). An additional advantage of using students in
experiments concerning understandability and modifiability is that the cognitive complexity
of the objects under study is not hidden by the participants’ experience. As suggested in
(Singer and Vinson 2002), ethical issues were dealt with carefully. There was no information
in the raw data that could allow a particular individual to be identified. The names of the
students who participated in the experiments were annotated to provide them with extra
points in their courses when needed, but it was not possible to link their names to their
responses. Informed consent and confidentiality are not required in these cases. The students’
participation might also have been biased because they were able to benefit from it (extra
points, examples of exam exercises), but their performance was not biased since all the
participants obtained the same benefits, independently of their responses.

& The participants’ lack of familiarity with the problem domain of a software system might
affect the understandability and the modifiability of the source code, thus biasing the results
since it might be an extra cognitive effort. For this reason, and owing to the time constraints,
we decided to use well-known domains as part of the experiment. There are no threats related
to the material used since the systems used were real, if small, and based on well-known
domains. We attempted to perform an experiment by simulating real conditions, and the
subjects were therefore provided with all the documentation of the system together, as a
maintainer would receive all the documentation of the maintenance project together.

& Internal validity: The threats to the internal validity have been mitigated by the design of
the experiment. Each group of subjects worked on the same systems in different orders.
Nevertheless, there is still the risk that the subjects might have learned how to improve
their performances from one session to the next. In all the experiments, the scores achieved
by the participants were not significantly better in the second run (with the exception of
R1-UCLM with UEffic and R2-UB1 with MEffec and MEffic). For each experiment, the
internal validity threat was also mitigated owing to the fact that the participants had similar
experience with the UML, software system modeling, and computer programming.
Furthermore, all the participants found the material provided, the tasks, and the goals of
the experiment clear, as the post-experiment survey questionnaire results showed. Another
issue concerns the exchange of information among the participants. The participants were
not allowed to communicate with each other. We prevented this by monitoring them both
during the runs and during the break between the first and the second task. Moreover, the
instrumentation was tested in a pilot study in order to check its validity. In addition,
mortality threats were mitigated by offering the subjects extra points in their final marks.
Another internal threat could be the influence of the language used in the documentation.
English was used in the experiment that took place in The Netherlands, and this may have
represented a threat owing to the fact that English is not the participants’ native language.
Students at Dutch Universities are, however, obliged to pass a high level English exam in
order to gain entrance to the university, and we do not therefore consider this to be a high
threat. The experimental material used in E-UL was in English, but the supervisors at the
experiment supported the native speakers and helped them when needed (e.g., in the
translation of technical terms). In the replications, the subjects were given the documen-
tation in their native languages, signifying that this threat was mitigated. A further threat
might have been the translation process; however, the experimental material was translated
by native Spanish/Italian speakers.

252 Empir Software Eng (2016) 21:212–259

& Conclusion validity: Conclusion validity concerns the data collection, the reliability of the
measurement, and the validity of the statistical tests. Statistical tests were used to reject the
null hypotheses. We have explicitly mentioned and discussed cases in which non-
significant differences were present. Conclusion validity might also be affected by the
number of observations. Further replications on larger datasets are therefore required to
confirm or contradict the results.

& Construct validity: Construct validity may be influenced by: 1) the measures used to
obtain a quantitative evaluation of the subjects’ performance, 2) the comprehension
questionnaires, 3) the maintenance tasks, and 4) the post-experiment questionnaire. We
used a well-known and widely used measure to obtain a quantitative evaluation of
comprehensibility and modifiability. The understanding/modification tasks were formulat-
ed to condition the subjects’ answers in favor of neither low nor High LoD. The measures
used were selected to achieve a balance between the correctness and completeness of the
answers. The questionnaires were defined to obtain sufficiently complex questions without
them being too obvious, and they were formulated in a similar way. The post-experiment
questionnaire was designed using standard forms and scales. Social threats (e.g., evalua-
tion apprehension) have been avoided, since the students were not graded on the results
obtained. Other possible threats to construct validity could be related to: the transla-
tion of the experimental material and social threats. The first kind of threat was
reduced through the involvement of a native speaker to translate all the material used.
Social threats (i.e., evaluation apprehension) were avoided since we did not grade the
students on the results obtained in the experiments. As the subjects were provided
with all the documentation of the system together, we were not able to control
whether or not they used the diagrams. This problem could be solved by dividing
the experiment into two different phases, the first of which would be related to the
understanding of the system in which only the UML diagrams would be provided,
and the second of which would be related to the modifiability of the system using the
UML diagrams provided plus the source code. This hypothetical design would make
it possible to control the factor related to the use or non-use of the diagrams, but the
experiment would be less realistic because in real scenarios maintainers can access all
the information when they need it.

8 Conclusions and Future Work

Many software projects do not produce complete or detailed documentation owing to time
constraints. Many maintenance projects are therefore performed by maintainers who have to
understand a software system based on the source code and the existing UML diagrams. An
alternative might be to use UML diagrams obtained by using a reverse engineering process
starting from the source code that is available. In this latter case, the diagrams would be much
more detailed and less abstract than is the case of forward designed diagrams.

The Level of Detail (LoD) presented in UML diagrams might therefore be an influential
factor in software maintenance tasks, but it could be different depending on the development
approach used. For example in a model-based approach, the optimal LoD is not clear, but in an
MDD approach a higher LoD would appear to be better as regards generating a more complete
source code. We thus decided to carry out a family of four experiments in order to investigate
whether the use of low LoD UML diagrams supports novice software engineers when
comprehending and modifying the source code of small systems in comparison to high LoD

Empir Software Eng (2016) 21:212–259 253

UML diagrams during model-centric maintenance. We have particularly focused on the
perfective maintenance tasks carried out by individual maintainers.

This family consisted of one experiment and three replications, carried out with
students from The Netherlands, Spain and Italy. We used controlled experiments
because a number of confounding and uncontrollable factors may be present in real
project settings. In real projects, it may be impossible to control factors such as
learning and/or fatigue effects and to select specific tasks. Controlled experiments also
reduce failure risks related to long term empirical investigations (as in our case).
Although questions about the external validity (e.g., generalization to realistic com-
prehension tasks on object oriented source code) may arise, controlled experiments
have often been conducted in the early steps of empirical investigations that have
taken place over the years (e.g. (Arisholm et al. 2006)).

The descriptive statistics might lead us to assume that high LoD diagrams are more helpful
when understanding a system in comparison to low LoD, while low LoD diagrams are more
helpful when carrying out maintenance tasks. Although the results obtained in this family of
experiments do not appear to have a clear tendency in favor of high or low LoD based on the
statistical test performed, two focus groups allowed us to extract the conclusion that UML
diagrams should not be used, independently of their LoD, in the context of novice software
maintainers when maintaining the source code of small realistic system from well-known
domains.

The empirical evidence obtained from the family of experiments should be considered valid
in the context of undergraduate/graduate students (considered as novice software maintainers)
who are maintaining relatively simple systems related to well-known domains. The question-
able utility of the UML in this context might be caused by the kind of systems modeled:
maintainers do not need so much information about the system when performing maintenance
tasks on small systems from well-known domains. In the case of novice maintainers modifying
small and well-known domains, and considering the findings obtained, we would therefore
recommend that companies follow a model-centric approach in order to improve the under-
standing of the system and source code but not invest too much in the maintenance of the
documentation related to the UML diagrams alone.

Possible future directions for our current research are: (i) performing further studies
considering realistic software systems related to larger and unknown domains to verify
whether the findings obtained are still valid; (ii) replicating the study with practitioners; (iii)
analyzing the effect of different UML notations (iv) studying the effect of different LoDs when
performing other types of maintenance (for example, corrective maintenance); and (v) ana-
lyzing the effect of high or low LoD UML diagrams in projects using other kinds of
development methodologies (for example MDD).

As the research presented in this work is part of a long term research effort concerning the
benefits of the UML in software maintenance, we have complemented the current study with a
survey completed by practitioners in order to investigate the kinds of software systems
maintained by companies, their characteristics (complexity, size, domains, etc.), whether or
not (in industry) companies use UML diagrams during source code maintenance, and the
benefits of using the UML that practitioners perceive (https://es.surveymonkey.com/s/
software-maintenance). We plan to complete the survey analysis in the near future.

Acknowledgments This work has been funded by the following projects: GEODAS-BC (Ministerio de
Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER, TIN2012-37493-C03-01)
and IMPACTUM (Consejería de Educación, Ciencia y Cultura de la Junta de Comunidades de Castilla La
Mancha, y Fondo Europeo de Desarrollo Regional FEDER, PEII11-0330-4414).

254 Empir Software Eng (2016) 21:212–259

Appendix

References

Abrial JR (1996) The B-Book. Cambridge University Press, New York
Anda B, Hansen K, Gullesen I, Thorsen HK (2006) Experiences from introducing UML-based development in a

large safety-critical project. Empir Softw Eng 11:555–581
Arisholm E, Briand LC, Hove SE, Labiche Y (2006) The impact of UML documentation on software

maintenance: an experimental evaluation. IEEE Trans Softw Eng 32:365–381
Basili V, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE Trans Softw Eng

25:456–473
Basili V, Weiss D (1984) A methodology for collecting valid software engineering data. IEEE Trans Softw Eng

10:728–738

Fig. 16 Example of a low LoD class diagram

Fig. 17 Example of a high LoD class diagram

Empir Software Eng (2016) 21:212–259 255

Biostat (2006) Comprehensive Meta-Analysis v2. Biostat, Englewood
Briand LC, Labiche Y, Di Penta M, Yan-Bondoc H (2005) An experimental investigation of formality in UML-

based development. IEEE Trans Softw Eng 31:833–849
Briand LC, Wüst J, Lounis H (2001) Replicated Case Studies for Investigating Quality Factors in Object-

Oriented Designs. Empir Softw Eng 6:11–58. doi:10.1023/A:1009815306478
Bruegge B, Dutoit AH (2010) Object-oriented software engineering: using UML, patterns, and Java. Prentice

Hall, Boston
Cant S, Jeffery D, Henderson-Sellers B (1995) A conceptual model of cognitive complexity of elements of the

programming process. Inf Softw Technol 37:351–362. doi:10.1016/0950-5849(95)91491-H
Carver J (2010) Towards Reporting Guidelines for Experimental Replications: A Proposal. Proceedings of the 1st

International Workshop on Replication in Empirical Software Engineering Research (RESER) [Held during
ICSE 2010]

Cohen D, Lindvall M, Costa P (2004) An introduction to agile methods. Adv Comput 62:2–67
Conover WJ (1998) Practical Nonparametric Statistics, 3rd ed. Wiley
Cruz-Lemus JA, Genero M, Caivano D et al (2010) Assessing the influence of stereotypes on the comprehension

of UML sequence diagrams: A family of experiments. Inf Softw Technol 53:1391–1403
Devore JL, Farnum N (1999) Applied Statistics for Engineers and Scientists. Duxbury Press, NY
Dobing B, Parsons J (2006) How UML is used? Commun ACM 49:109–113
Dzidek WJ, Arisholm E, Briand LC (2008) A realistic empirical evaluation of the costs and benefits of UML in

software maintenance. IEEE Trans Softw Eng 34:407–432
Erickson J, Siau K (2007) Theoretical and practical complexity of modeling methods. Commun ACM 50:46–51
Ericksson HE, Penker M, Lyons B, Fado D (2004) UML 2 Toolkit. Wiley
Fernández-Sáez AM, Chaudron MRV, Genero M, Ramos I (2013a) Are forward designed or reverse-engineered

UML diagrams more helpful for code maintenance?: a controlled experiment. Proceedings of the 17th
International Conference on Evaluation and Assessment in Software Engineering. ACM, New York, pp 60–71

Fernández-Sáez AM, Genero M, Chaudron MRV (2013b) Empirical studies concerning the maintenance of
UML diagrams and their use in the maintenance of code: A systematic mapping study. Inf Softw Technol 55:
1119–1142

Fernández-Sáez AM, Genero M, Chaudron MRV et al (2014) Are Forward Designed or Reverse-Engineered
UML diagrams more helpful for code maintenance?: A family of experiments. Inf Softw Technol. doi:10.
1016/j.infsof.2014.05.014

Fernández-Sáez AM, Genero M, Chaudron MRV (2012) Does the Level of Detail of UML Models Affect the
Maintainability of Source Code? Proceedings of the Experiences and Empirical Studies in Software Modelling
Workshop (EESSMod’11) at MODELS 2011. LNCS 7167, Wellington, New Zealand, pp 133–147

Fjeldstad RK, Hamlen WT (1979) Application Program Maintenance Study: Report to Our Respondents.
Proceedings of GUIDE 48

Garousi G, Garousi V, Moussavi M, et al. (2013) Evaluating Usage and Quality of Technical Software
Documentation: An Empirical Study. Proceedings of the 17th International Conference on Evaluation and
Assessment in Software Engineering (EASE’2013). ACM, pp 24–35

Glass R (2002) Facts and fallacies of software engineering. Addison-Wesley
Glässer U, Gotzhein R, Prinz A (2003) The formal semantics of SDL-2000: Status and perspectives. Comput

Netw 42:343–358. doi:10.1016/S1389-1286(03)00247-0
Gravino C, Tortora G, Scanniello G (2010) An empirical investigation on the relation between analysis models

and source code comprehension. Proceedings of the 2010 ACM Symposium on Applied Computing
(SAC’2010). ACM, pp 2365–2366

Grossman M, Aronson JE, McCarthy RV (2005) Does UML make the grade? Insights from the software
development community. Inf Softw Technol 47:383–397

Hannay JE, Dybå T, Arisholm E, Sjøberg DIK (2009) The effectiveness of pair programming: A meta-analysis.
Inf Softw Technol 51:1110–1122

Hedges LV, Olkin I (1985) Statistical Methods for Meta-Analysis. Academia Press, New York
Höst M, Regnell B, Wholin C (2000) Using students as subjects - a comparative study of students and

professionals in lead-time impact assessment. Proceedings of the 4th Conference on Empirical
Assessment and Evaluation in Software Engineering. pp 201–214

ISO/IEC (2014) ISO/IEC 25001: Systems and software engineering - Systems and software Quality Requirements
and Evaluation (SQuaRE) - Planning and management. International Organization for Standarization

Jedlitschka A, Ciolkowoski M, Pfahl D (2008) Reporting experiments in software engineering. Guide to
Advanced Empirical Software Engineering

Juristo N, Moreno A (2001) Basics of software engineering experimentation. Kluwer Academic Publishers, Boston
Juristo N, Vegas S, Solari M et al (2013) A process for managing interaction between experimenters to get useful

similar replications. Inf Softw Technol 55:215–225

256 Empir Software Eng (2016) 21:212–259

Kampenes V, Dybå T, Hannay JE, Sjoberg DIK (2007) A Systematic Review of Effect Size in Software
Engineering Experiments. Inf Softw Technol 49:1073–1086

Karahasanovic A, Thomas R (2007) Difficulties experienced by students in maintaining object-oriented Systems:
an empirical study. Proceedings of the Australasian Computing Education Conference (ACE’2007). pp 81–87

Kirk RE (1995) Experimental design. procedures for the behavioural sciences. Brooks/Cole Publishing
Company, Belmont

Kitchenham BA, Pfleeger S, Hoaglin DC et al (2002) Preliminary Guidelines for Empirical Research in Software
Engineering. IEEE Trans Softw Eng 28:721–734

Lange CFJ, Chaudron MRV, Muskens J (2006) In practice: UML software architecture and design description.
IEEE Softw 23:40–46

Lauesen S (2002) Software Requirements: Styles and Techniques. Addison-Wesley, UK
Lientz BP, Swanson EB (1980) Software Maintenance Management. Addison -Wesley, Massachusetts
Lindsay RM, Ehrenberg A (1993) The design of replicated studies. Am Stat 47:217–228
Nugroho A (2009) Level of detail in UML models and its impact on model comprehension: A controlled

experiment. Inf Softw Technol 51:1670–1685
Nugroho A, Chaudron MRV (2009) Evaluating the impact of UML modeling on software quality: An industrial

case study. LNCS 5795:181–195
Nugroho A, Chaudron MRV (2008) A survey into the rigor of UML use and its perceived impact on quality and

productivity. Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement (ESEM 2008). ACM, New York, pp 90–99

OMG (2010) The Unified Modeling Language. Documents associated with UML version 2.3. http://www.omg.
org/spec/UML/2.3.

Oppenheim AN (2000) Questionnaire Design, Interviewing and Attitude Measurement, 0002-New ed.
Bloomsbury Academic, United Kingdom

Pippenger N (1978) Complexity Theory. Scientific American 238:
Poels G, Dedene G (2000) Measures for Assessing Dynamic Complexity Aspects of Object-oriented Conceptual

Schemes. Proceedings of the 19th International Conference onConceptualModeling. Springer, Berlin, pp 499–512
Pressman RS (2005) Software engineering: a practitioners approach, seventh. McGraw Hill, New York
Roehm T, Tiarks R, Koschke R, Maalej W (2012) How Do Professional Developers Comprehend Software?

Proceedings of the 34th International Conference on Software Engineering. IEEE Press, Piscataway, pp 255–265
Scanniello G, Gravino C, Genero M, et al. (2013) On the Impact of UML Analysis Models on Source Code

Comprehensibility andModifiability.ACMTransactionsOnSoftwareEngineeringAndMethodology (In press) 26
Scanniello G, Gravino C, Tortora G (2012) Does the Combined use of Class and Sequence Diagrams Improve

the Source Code Comprehension? Results from a Controlled Experiment. Proceedings of the Experiences
and Empirical Studies in Software Modelling Workshop (EESSMoD´2012)

Scanniello G, Gravino C, Tortora G (2010) Investigating the Role of UML in the Software Modeling and
Maintenance - A Preliminary Industrial Survey. Proceedings of the 12th International Conference on
Enterprise Information Systems (ICEIS’2010). Funchal, Madeira, Portugal, pp 141–148

Sheskin D (2007) Handbook of Parametric and Nonparametric Statistical Procedures, 4th edn. Chapman and
Hall, New York

Siau K (1999) Information Modeling and Method Engineering: A Psychological Perspective. J Database Manag
10:44–50

Singer J, Vinson NG (2002) Ethical Issues in Empirical Studies of Software Engineering. IEEE Trans Softw Eng
28:1171–1180. doi:10.1109/TSE.2002.1158289

Sjøberg DIK, Hannay JE, Hansen O et al (2005) A survey of controlled experiments in software engineering.
IEEE Trans Softw Eng 31:733–753

Spivey JM (1989) The Z Notation: A Reference Manual. Prentice-Hall, New York
SPSS (2003) SPSS 12.0, syntax reference guide. SPSS Inc, Chicago
Tryggeseth E (1997) Report from an Experiment: Impact of Documentation on Maintenance. J Empir Softw Eng

2:201–207
Vegas S, Juristo N, Moreno A, et al. (2006) Analysis of the influence of communication between researchers on

experiment replication. Proceedings of the ACM/IEEE international symposium on Empirical software
engineering (ISESE’2006). pp 28–37

Verelst J (2004) The influence of the level of abstraction on the evolvability of conceptual models of information
systems. Proceedings of the International Symposium onEmpirical Software Engineering (ISESE’04). pp 17–26

Wieringa RJ (2003) Chapter 8 - Entity-Relationship Diagrams. In: Wieringa RJ (ed) Design Methods for
Reactive Systems. Morgan Kaufmann, San Francisco, pp 77–88

Wohlin C, Runeson P, Host M et al (1999) Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, Boston

Empir Software Eng (2016) 21:212–259 257

AnaM. Fernández-Sáez has aMSc in Computer Science from the University of Castilla-LaMancha, Ciudad Real,
Spain (2009). She is member of the Alarcos research group and Ph.D student at the Department of Technologies and
Information Systems at the same university. Part of her PhD research is done at Leiden University, Leiden, The
Netherlands. Her research interests include: UML model quality, quality in model-driven development, software
measures and empirical software engineering. Her contact email is: anamaria.fernandez.saez@gmail.com

Marcela Genero is Associate Professor at the Department of Technologies and Information Systems at the
University of Castilla-La Mancha, Ciudad Real, Spain. Accredited by ANECA as Full Professor since January of
2012. She received her MSc degree in Computer Science in the Department of Computer Science of the
University of South, Argentine in 1989, and her PhD at the University of Castilla-La Mancha, Ciudad Real,
Spain in 2002. Her research focuses on the following areas: empirical software engineering, software quality,
quality models, conceptual models quality, software modelling effectiveness, gamification in software engineer-
ing, etc.). Marcela Genero has published more than 100 peer review papers in prestigious journals (DKE, ESEM,
ACM TOSEM, IST, JSS, SOSYM, etc.) and conferences (CAISE, E/R, MODELS, ISESE, METRICS, ESEM,
EASE, etc.). She co-edited the books titled “Data and Information Quality” (Kluwer, 2001) and “Metrics for
Software Conceptual Models” (Imperial College, 2005), among others. She participated in several program
committees (CAISE 2005, METRICS, 2004-2006, ICSM 2007, ESEM 2007-2014, EASE 2008-2014, etc.) and
as reviewer of several journals as well (EMSE, IEEE TSE, SOSYM, JSS, IST, etc.). She has organised several
conferences, workshops and tutorials on empirical studies in software modelling, evidence-based software
engineering, quality in conceptual modelling, etc. She has managed several research projects which involved
universities and private companies as partners, related to topics within the research areas previously mentioned.
She is member of the International Software Engineering Research Network (ISERN) since 2004.

258 Empir Software Eng (2016) 21:212–259

Danilo Caivano graduated at the University of Bari Aldo Moro, where he also obtained his PhD in 2002 and is
currently assistant professor. He carries out his research in the Software Engineering Laboratory at the Department of
Informatics. His research and teaching activities focus on topics related to Software Engineering with emphasis on
Project and ProcessManagement in collocated and distributed contexts and on software development, maintenance and
testing. He is member of the editorial board of several prestigious international journals and conferences. Since 2007 he
is Chief Executive Officer of SER&Practices (www.serandp.com), a Spin Off company of the University of Bari that he
has contributed to start up. He has managed several large and complex projects, many of which are focused on research
and development in partnershipwithUniversities, Research Centers, as well as national and international companies. He
is actively involved in the ProjectManagement Institute - Southern Italy Chapter (www.pmi.org) and in the International
Software Engineering Research Network (isern.iese.de).

Michel R.V. Chaudron is full professor and head of the Software Engineering Division at the joint department
of Computer Science and Engineering of Chalmers and Gothenborg University in Sweden. Prior to that he
worked at Leiden University and TU Eindhoven in The Netherlands. From 1997 to 1999, he worked with IT-
consultancy CMG (now CGI) in the field of Transport Telematics. He obtained his M.Sc. and Ph.D. degrees from
Leiden University, The Netherlands. Prof. Chaudron’s research interests are in software architecture, component-
based software engineering, software design and software modeling and model-driven software development
with a special interest in empirical studies into the effectiveness of modeling. He has published more than 100
peer reviewed papers. He has been active member of several conference in these areas including: CBSE,
MODELS, Euromicro-SEAA, ASE, and ESEM.

Empir Software Eng (2016) 21:212–259 259

